1
|
Zeng H, Le L, Zhou W, Chen Y, Xie W, Xiong B, Chen Y, Fu B, Qiu R. Ni/Pd Dual-Catalysis Strategy for C(sp 2)-Sb Cross-Coupling of Halostibines with Aryl Triflates and Applications of Products as Coupling Reagents, Ligands, and Anticancer Compounds. J Org Chem 2025; 90:7043-7048. [PMID: 40388973 DOI: 10.1021/acs.joc.5c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
A novel and efficient dual-catalysis strategy using nickel and palladium has been developed for the cross-coupling of halostibines with aryl triflates to form C(sp2)-Sb bonds. This approach shows a wide substrate scope and high functional group tolerance and could be conducted on a gram scale. The synthesized arylstibines also could be arylation reagents reacting with alkyl and phenyl alkenes to form olefins and ligands to regulate the hydrogenation of diphenylacetylene. In addition, synthesized arylstibine 3q also shows satisfactory anticancer activity against cancerous MDA-MB-231 cells.
Collapse
Affiliation(s)
- Huifan Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Liyuan Le
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Wenjun Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Youwen Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wuxing Xie
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yi Chen
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Biao Fu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Renhua Qiu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
2
|
Cai D, Wang X, Wang Q, Tong P, Niu W, Guo X, Yu J, Chen X, Liu X, Zhou D, Yin F. Controlled release characteristics of alkyl gallates and gallic acid from β-cyclodextrin inclusion complexes of alkyl gallates. Food Chem 2024; 460:140726. [PMID: 39111044 DOI: 10.1016/j.foodchem.2024.140726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
The freeze-drying approach was used to create inclusion complexes utilizing alkyl gallates and β-cyclodextrin, namely dodecyl gallate, octyl gallate, butyl gallate, and ethyl gallate, which are exemplary examples of phenolic esters. The everted-rat-gut-sac model demonstrated that the inclusion complexes released alkyl gallates, which were subsequently hydrolyzed to generate free gallic acid, as evidenced by HPLC-UV analysis. Both gallic acid and short-chain alkyl gallates were capable of permeating the small intestinal membrane. The transport rate of gallic acid (or alkyl gallates) exhibited an initial rise followed by a drop when the carbon-chain lengths varied. The inclusion complex groups exhibited a superior sustained-release effect compared to the comparable alkyl gallates groups, thus possibly leading to higher bioavailability and stronger bioactivity. Moreover, altering the length of the carbon chain will allow for the effortless achievement of regulated release of phenolic compounds and short-chain phenolic esters from such β-cyclodextrin inclusion complexes.
Collapse
Affiliation(s)
- Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Peiyong Tong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Weiyuan Niu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xu Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
3
|
Xiao Z, Yu P, Sun P, Kang Y, Niu Y, She Y, Zhao D. Inclusion complexes of β-cyclodextrin with isomeric ester aroma compounds: Preparation, characterization, mechanism study, and controlled release. Carbohydr Polym 2024; 333:121977. [PMID: 38494230 DOI: 10.1016/j.carbpol.2024.121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cyclodextrins (CDs) have been discovered to provide an efficient solution to the limited application of ester aroma molecules used in food, tobacco, and medication due to their strong smell and unstable storage. This work combined molecular modeling and experimental to analyze the conformation and controlled release of isomeric ester aroma compounds/β-CD inclusion complexes (ICs). The investigation revealed that ester aroma compounds could be effectively encapsulated within the β-CD cavity, forming ICs with low binding affinity. Furthermore, the key driving forces in ICs were identified as hydrogen bonds and van der Waals interactions through theoretical simulation. Results from the Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and Isothermal titration calorimetry (ITC) experiments confirmed the intermolecular interaction predicted by the molecular model. Notably, the release rate of aroma compounds from L-menthyl acetate/β-CD (LMA/β-CD) IC exceeded that of terpinyl acetate/β-CD (TA/β-CD) IC. This difference is attributed to the length of the chain of aroma molecules and the variation in the position of functional groups, influencing the stable formation of ICs with β-CD. These findings hold potential implications for refining the application of ICs across diverse industries.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Peiran Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
4
|
Sezgin-Bayindir Z, Losada-Barreiro S, Fernández-Bravo S, Bravo-Díaz C. Innovative Delivery and Release Systems for Antioxidants and Other Active Substances in the Treatment of Cancer. Pharmaceuticals (Basel) 2023; 16:1038. [PMID: 37513948 PMCID: PMC10383431 DOI: 10.3390/ph16071038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major diseases leading to death worldwide, and the fight against the disease is still challenging. Cancer diseases are usually associated with increased oxidative stress and the accumulation of reactive oxygen and nitrogen species as a result of metabolic alterations or signaling aberrations. While numerous antioxidants exhibit potential therapeutic properties, their clinical efficiency against cancer is limited and even unproven. Conventional anticancer antioxidants and drugs have, among others, the great disadvantage of low bioavailability, poor targeting efficiency, and serious side effects, constraining their use in the fight against diseases. Here, we review the rationale for and recent advances in potential delivery systems that could eventually be employed in clinical research on antioxidant therapy in cancer. We also review some of the various strategies aimed at enhancing the solubility of poorly water-soluble active drugs, including engineered delivery systems such as lipid-based, polymeric, and inorganic formulations. The use of cyclodextrins, micro- and nanoemulsions, and thermosensitive smart liposomes as useful systems for the delivery and release of poorly aqueous-soluble drugs, improving their bioactivity and stability, is also addressed. We also provide some details on their formulation processes and their use in a variety of medical applications. Finally, we briefly cover a case study specifically focused on the use of delivery systems to minimize oral cancer and associated dental problems.
Collapse
Affiliation(s)
- Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Sonia Losada-Barreiro
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Spain
| | - Sofía Fernández-Bravo
- Odontology Department, Primary Health Care Unit, Galician Health Service (SERGAS), Camiño do Lodairo s/n, 15570 Narón, Spain
| | - Carlos Bravo-Díaz
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Spain
| |
Collapse
|
5
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
6
|
Spray-Drying of Hydroxypropyl β-Cyclodextrin Microcapsules for Co-Encapsulation of Resveratrol and Piperine with Enhanced Solubility. CRYSTALS 2022. [DOI: 10.3390/cryst12050596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synergistic therapeutic benefits of resveratrol (RES) and piperine (PIP) have been proven for the treatment of various diseases. This study reports, for the first time, spray-drying of hydroxypropyl β-cyclodextrin (HP-β-CD) microcapsules for combined delivery of resveratrol and piperine. Phase solubility studies indicated that there was a strong interaction between the active ingredients and HP-β-CD, and both active ingredients can bind stably to HP-β-CD. The results of FTIR, XRD, and DSC demonstrated that RES-PIP/HP-β-CD inclusion complexes were successfully formed, with the RES and PIP encapsulated into the hollow spherical cavity of HP-β-CD. The results of SEM showed that the spray-dried microcapsules displayed a smooth surface and uniform particle size. Upon the formation of the spray-dried microcapsules, both RES and PIP presented significantly enhanced solubility. The results of DPPH and ABTS+ scavenging activity assays showed that the spray-drying process did not adversely influence the antioxidant activity of the bioactives, and the addition of PIP increased the antioxidation performance of RES.
Collapse
|
7
|
Polyphenols as Antioxidants for Extending Food Shelf-Life and in the Prevention of Health Diseases: Encapsulation and Interfacial Phenomena. Biomedicines 2021; 9:biomedicines9121909. [PMID: 34944722 PMCID: PMC8698762 DOI: 10.3390/biomedicines9121909] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/23/2023] Open
Abstract
Toxicity caused by the exposure to human-made chemicals and environmental conditions has become a major health concern because they may significantly increase the formation of reactive oxygen species (ROS), negatively affecting the endogenous antioxidant defense. Living systems have evolved complex antioxidant mechanisms to protect cells from oxidative conditions. Although oxidative stress contributes to various pathologies, the intake of molecules such as polyphenols, obtained from natural sources, may limit their effects because of their antioxidant and antimicrobial properties against lipid peroxidation and against a broad range of foodborne pathogens. Ingestion of polyphenol-rich foods, such as fruits and vegetables, help to reduce the harmful effects of ROS, but the use of supramolecular and nanomaterials as delivery systems has emerged as an efficient method to improve their pharmacological and therapeutic effects. Suitable exogenous polyphenolic antioxidants should be readily absorbed and delivered to sites where pathological oxidative damage may take place, for instance, intracellular locations. Many potential antioxidants have a poor bioavailability, but they can be encapsulated to improve their ideal solubility and permeability profile. Development of effective antioxidant strategies requires the creation of new nanoscale drug delivery systems to significantly reduce oxidative stress. In this review we provide an overview of the oxidative stress process, highlight some properties of ROS, and discuss the role of natural polyphenols as bioactives in controlling the overproduction of ROS and bacterial and fungal growth, paying special attention to their encapsulation in suitable delivery systems and to their location in colloidal systems where interfaces play a crucial role.
Collapse
|
8
|
Preparation, characterization, and molecular modeling of sesamol/β-cyclodextrin derivatives inclusion complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Gamov GA, Zavalishin MN, Khokhlova AY, Gashnikova AV, Kiselev AN, Zav’yalov AV, Aleksandriiskii VV. Kinetics of the Oxidation of Protocatechuic and Gallic Acids by Atmospheric Oxygen in the Presence of Laccase from T. versicolor. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. Int J Biol Macromol 2020; 147:990-996. [DOI: 10.1016/j.ijbiomac.2019.10.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022]
|
11
|
García-Pérez P, Losada-Barreiro S, Gallego PP, Bravo-Díaz C. Cyclodextrin-Elicited Bryophyllum Suspension Cultured Cells: Enhancement of the Production of Bioactive Compounds. Int J Mol Sci 2019; 20:E5180. [PMID: 31635435 PMCID: PMC6834148 DOI: 10.3390/ijms20205180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The rates of production of secondary metabolites obtained by employing conventional plant breeding may be low for practical purposes. Thus, innovative approaches for increasing their rates of production are being developed. Here, we propose the use of elicited plant suspension cultured cells (PSCC) with cyclodextrins (CDs) as an alternative method for the production of bioactive compounds from Bryophyllum species. For this purpose, we analyzed the effects of methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin on cell culture growth and on the intra- and extracellular production of phenols and flavonoids. Results clearly show that CDs enhance the biosynthesis of polyphenols by PSCC favoring their accumulation outside the cells. CDs shift the homeostatic equilibrium by complexing extracellular phenolics, causing stress in cells that respond by increasing the production of intracellular phenolics. We also analyzed the radical scavenging activity of the culture medium extracts against 2,2-diphenyl-1-pycrilhydrazyl (DPPH) radical, which increased with respect to the control samples (no added CDs). Our results suggest that both the increase in the production of polyphenols and their radical scavenging activity are a consequence of their inclusion in the CD cavities. Overall, based on our findings, CDs can be employed as hosts for increasing the production of polyphenols from Bryophyllum species.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain.
| | - Sonia Losada-Barreiro
- Physical Chemistry Department, Chemistry Faculty, University of Vigo, 36310 Vigo, Spain.
- REQUIMTE-LAQV, Chemistry and Biochemistry Department, Science Faculty, University of Porto, 4169-007 Porto, Portugal.
| | - Pedro P Gallego
- Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, 36310 Vigo, Spain.
| | - Carlos Bravo-Díaz
- Physical Chemistry Department, Chemistry Faculty, University of Vigo, 36310 Vigo, Spain.
| |
Collapse
|
12
|
Jiang L, Yang J, Wang Q, Ren L, Zhou J. Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1612948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Longwei Jiang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jingde Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Qian Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
13
|
Characterization and antioxidant activity of the complexes of tertiary butylhydroquinone with β-cyclodextrin and its derivatives. Food Chem 2018; 260:183-192. [DOI: 10.1016/j.foodchem.2018.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/18/2022]
|
14
|
Rezaee M, Askari G, EmamDjomeh Z, Salami M. Effect of organic additives on physiochemical properties and anti-oxidant release from chitosan-gelatin composite films to fatty food simulant. Int J Biol Macromol 2018; 114:844-850. [DOI: 10.1016/j.ijbiomac.2018.03.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022]
|
15
|
Li Q, Pu H, Tang P, Tang B, Sun Q, Li H. Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem 2017; 245:1062-1069. [PMID: 29287323 DOI: 10.1016/j.foodchem.2017.11.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
Abstract
This study prepared and investigated the inclusion complexes of propyl gallate (PG) with beta-cyclodextrin (β-CD) and its water-soluble derivatives dimethyl-beta-cyclodextrin (DM-β-CD), hydroxypropyl-beta-cyclodextrin (HP-β-CD), and sulfobutylether-beta-cyclodextrin (SBE-β-CD). Phase solubility studies indicated that the formed complexes were in 1:1 stoichiometry. FT-IR, PXRD, DSC, 1H-NMR, ROESY-NMR, and SEM analysis results confirmed the formation of the complexes. The NMR results indicated that the aromatic ring of PG was embedded into the CD cavity. The aqueous solubility of PG was markedly improved, and that of the PG/DM-β-CD complex increased by 365.3 times. In addition, the results of the antioxidant activity assay showed that the hydroxyl radical and superoxide radical scavenging capacities of the complexes increased by 3-11 times and 1-6.5 times, respectively, compared with those of PG under the same concentration. Therefore, CD/PG inclusion complexes with improved solubility and radical scavenging capacity can be used as water-soluble antioxidants in the food industry.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongyu Pu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Peixiao Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Roy P, Dinda AK, Chaudhury S, Dasgupta S. β-cyclodextrin encapsulated polyphenols as effective antioxidants. Biopolymers 2017; 109. [DOI: 10.1002/bip.23084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Pritam Roy
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Amit Kumar Dinda
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | | | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
17
|
Bogdan M, Floare CG, Pirnau A, Neamtu S. Competitive Binding of Tolmetin to β-Cyclodextrin and Human Serum Albumin: 1H NMR and Fluorescence Spectroscopy Studies. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0549-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Exploiting the cyclodextrins ability for antioxidants encapsulation: A computational approach to carnosol and carnosic acid embedding. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|