1
|
Sandaruwan HHPB, Manatunga DC, N Liyanage R, Costha NP, Dassanayake RS, Wijesinghe RE, Zhou Y, Liu Y. Next-generation methods for precise pH detection in ocular chemical burns: a review of recent analytical advancements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:408-431. [PMID: 39564777 DOI: 10.1039/d4ay01178c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ocular burns due to accidental chemical spillage pose an immediate threat, representing over 20% of emergency ocular traumas. Early detection of the ocular pH is imperative in managing ocular chemical burns. Alkaline chemical burns are more detrimental than acidic chemical burns. Current practices utilize litmus, nitrazine strips, bromothymol blue, fluorescent dyes, and micro-combination glass probes to detect ocular pH. However, these methods have inherent drawbacks, leading to inaccurate pH measurements, less sensitivity, photodegradation, limited pH range, and longer response time. Hence, there is a tremendous necessity for developing relatively simple, accurate, precise ocular pH detection methods. The current review aims to provide comprehensive coverage of the conventional practices of ocular pH measurement during accidental chemical burns, highlighting their strengths and weaknesses. Besides, it delves into cutting-edge technologies, including pH-sensing contact lenses, microfluidic contact lenses, fluorescent scleral contact lenses, fiber optic pH technology, and pH-sensitive thin films. The study meticulously examines the reported work since 2000. The collected data have also helped propose future directions, and the research gap needs to be filled to provide a more rapid, sensitive, and accurate measurement of ocular pH in eye clinics. For the first time, this review consolidates current techniques and recent advancements in ocular pH detection, offering a strategic overview to propel ophthalmic-related research forward and enhance ocular burn management during a chemical spillage.
Collapse
Affiliation(s)
- H H P Benuwan Sandaruwan
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Renuka N Liyanage
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10200, Sri Lanka
| | | | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana North, Homagama 10206, Sri Lanka.
| | - Ruchire Eranga Wijesinghe
- Center for Excellence in Informatics, Electronics & Transmission (CIET), Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115, Sri Lanka
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
2
|
Saad H, Nour El-Dien FA, El-Gamel NEA, Abo Dena AS. Removal of bromophenol blue from polluted water using a novel azo-functionalized magnetic nano-adsorbent. RSC Adv 2024; 14:1316-1329. [PMID: 38174277 PMCID: PMC10763660 DOI: 10.1039/d3ra04222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Water pollution from organic dyes poses a serious danger to the environment. In the present work, we report a novel adsorbent (ADFS) based on azo-dye-functionalized superparamagnetic iron oxide nanoparticles (SPIONs) for the removal of the anionic dye bromophenol blue (BPB) from contaminated water. The fabricated SPIONs, azo dye, and ADFS adsorbent were characterized with FTIR and UV-vis absorption spectroscopy, 1HNMR spectroscopy, mass spectrometry, SEM imaging, dynamic light scattering (DLS), zeta potential measurements, vibrating sample magnetometry, thermogravimetric analysis, differential thermal analysis, and X-ray diffraction analysis. DLS measurements showed a particle size of 46.1 and 176.5 nm for the SPIONs and the ADFS, respectively. The adsorbent exhibited an adsorption capacity of 7.43 mg g-1 and followed the pseudo-second-order kinetics model (r2 = 0.9981). The ADFS could efficiently remove BPB from water after stirring for 120 minutes at room temperature and pH 2. The adsorption process was proved to occur via physisorption, as revealed by the Freundlich isotherm (n = 1.82 and KF = 11.5). Thermodynamic studies implied that the adsorption is spontaneous (-8.03 ≤ ΔG ≤ -0.58 kJ mol-1) and enthalpy-driven might take place via van der Waals interactions and/or hydrogen bonding (ΔH = -82.19 kJ mol-1 and ΔS = -0.24 kJ mol-1 K-1).
Collapse
Affiliation(s)
- Hadeel Saad
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
- General Organization for Export and Import Control Ramses Street Cairo Egypt
| | - F A Nour El-Dien
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Nadia E A El-Gamel
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| |
Collapse
|
3
|
Magnaghi LR, Zanoni C, Alberti G, Biesuz R. The colorful world of sulfonephthaleins: Current applications in analytical chemistry for "old but gold" molecules. Anal Chim Acta 2023; 1281:341807. [PMID: 38783746 DOI: 10.1016/j.aca.2023.341807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 05/25/2024]
Abstract
Sulfonephthaleins represent one of the most common and widely employed reactive dyes in analytical chemistry, thanks to their stability, low-cost, well-visible colors, reactivity and possibilities of chemical modification. Despite being first proposed in 1916, nowadays, these molecules play a fundamental role in biological and medical applications, environmental analyses, food quality monitoring and other fields, with a particular focus on low-cost and disposable devices or methods for practical applications. Since up to our knowledge, no reviews or book chapters focused explicitly on sulfonephthaleins have ever been published, in this review, we will briefly describe sulfonephthaleins history, their acid-base properties will be discussed, and the most recent applications in different fields will be presented, focusing on the last ten years literature (2014-2023). Finally, safety and environmental issues will be briefly discussed, despite being quite controversial.
Collapse
Affiliation(s)
- Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy.
| | - Camilla Zanoni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy; Unità di Ricerca di Pavia, INSTM, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
4
|
Enhanced photocatalytic activity of Ni-doped BiFeO3 nanoparticles for degradation of bromophenol blue in aqueous solutions. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Assessment and Application of Modified Cationic Polyvinyl Alcohol Emulsifiers in Bitumen Emulsions. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2021-2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this work, a series of emulsifiers were prepared by changing the molar ratio of polyvinyl alcohol (PVA) to the long chain quaternary ammonium salt (A0). The emulsifiers were characterised by FTIR and 1HNMR. The stability of the emulsions was checked and evaluated by determining the phase separation and by UV-Vis spectrophotometry. The emulsion stability increased with increasing emulsifier concentration, which was mainly due to the reduced droplet size and increased viscosity of the emulsions. Stability was also dependent on pH. At pH values between 5 to 3, stability was increased, but at further decreasing pH values, the emulsion became unstable or the emulsion separated. This could be mainly because the excess of positive ions compresses the double electron layer. The experimental results showed that PVA as a macromolecular matrix material has a great application potential for the emulsification process.
Collapse
|
6
|
Miyagawa A, Fukuhara G, Okada T. Acid dissociation under hydrostatic pressure: Structural implications for volumetric parameters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Snigur D, Fizer M, Chebotarev A, Lukianova O, Bevziuk K. Protonation of quinoline yellow WS in aqueous solutions: Spectroscopic and DFT theoretical studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Shalaby AA, Mohamed AA. Determination of acid dissociation constants of Alizarin Red S, Methyl Orange, Bromothymol Blue and Bromophenol Blue using a digital camera. RSC Adv 2020; 10:11311-11316. [PMID: 35495332 PMCID: PMC9050617 DOI: 10.1039/c9ra10568a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/13/2020] [Indexed: 11/21/2022] Open
Abstract
Acid dissociation constants (pKa) are important parameters for the characterization of organic and inorganic compounds. They play a crucial role in different physical, chemical, and biological studies. Herein, we introduce a new approach for the determination of acid dissociation constant based on digital image analysis using a low-cost, precise, accurate, sensitive, and portable home-made, camera-based platform. Digital images of Alizarin Red S, Bromophenol Blue, Bromothymol Blue, and Methyl Orange solutions were captured at various pH values. The captured images were analysed to obtain the RGB (Red, Green, and Blue) colour intensities that are used to calculate the RGB colour absorbances. The pKa values were calculated from the RGB colour absorbance–pH relationship using graphical and mathematical methods, and with the aid of DATAN software. For the four studied dyes, the results obtained from digital image analysis were in excellent agreement with the data of sophisticated spectrophotometers and the previously reported literature data. Acid dissociation constants (pKa) are important parameters for the characterization of organic and inorganic compounds.![]()
Collapse
Affiliation(s)
- Ahmed A Shalaby
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia Cairo-11566 Egypt +202 24831836 +201001578849
| | - Ashraf A Mohamed
- Department of Chemistry, Faculty of Science, Ain Shams University Abbassia Cairo-11566 Egypt +202 24831836 +201001578849
| |
Collapse
|
9
|
Xiang Y, Gao M, Shen T, Cao G, Zhao B, Guo S. Comparative study of three novel organo-clays modified with imidazolium-based gemini surfactant on adsorption for bromophenol blue. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110928] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Park M, Hong KI, Kang M, Kim TW, Lee H, Jang WD, Jeong KU. Hierarchical Hybrid Nanostructures Constructed by Fullerene and Molecular Tweezer. ACS NANO 2019; 13:6101-6112. [PMID: 31042357 DOI: 10.1021/acsnano.9b02893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the construction of well-defined hierarchical superstructures of pristine [60]fullerene (C60) arrays, pyrene-based molecular tweezers (PT) were used as host molecules for catching and arranging C60 guest molecules. The formation of host-guest complexes was systematically studied in solution as well as in the solid state. Two-dimensional proton nuclear magnetic resonance spectroscopic studies revealed that PT-host and C60-guest complexes were closely related to the molecular self-assembly of PT. Ultraviolet and fluorescence spectroscopic titrations indicated the formation of stable 1:1 and 2:1 (PT/C60) complexes. From the nonlinear curve-fitting analysis, equilibrium constants for the 1:1 (log K1) and 2:1 (log K2) complexes were estimated to be 4.96 and 5.01, respectively. X-ray diffraction results combined with transmission electron microscopy observations clearly exhibited the construction of well-defined layered superstructures of the PT-host and C60-guest complexes. From electron mobility measurements, it was demonstrated that the well-defined hierarchical hybrid nanostructure incorporating a C60 array exhibited a high electron mobility of 1.7 × 10-2 cm2 V-1 s-1. This study can provide a guideline for the hierarchical hybrid nanostructures of host-guest complex and its applications.
Collapse
Affiliation(s)
- Minwook Park
- Department of Polymer-Nano Science and Technology, Department of BIN Convergence Technology , Chonbuk National University , Jeonju , Jeonbuk 54896 , Korea
| | - Kyeong-Im Hong
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Minji Kang
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , Jeonju , Jeonbuk 565-905 , Korea
| | - Tae-Wook Kim
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , Jeonju , Jeonbuk 565-905 , Korea
| | - Hosoowi Lee
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Woo-Dong Jang
- Department of Chemistry , Yonsei University , Seoul 03722 , Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of BIN Convergence Technology , Chonbuk National University , Jeonju , Jeonbuk 54896 , Korea
| |
Collapse
|
11
|
Dangui AZ, Santos VMS, Gomes BS, de Castilho TS, Nicolini KP, Nicolini J. Preferential solvation bromophenol blue in water-alcohol binary mixture. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:333-341. [PMID: 29885632 DOI: 10.1016/j.saa.2018.05.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, the perichromic behavior of bromophenol blue (BPB) in various binary solvent mixtures was investigated. The binary mixtures considered were comprised of water and methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH), isopropanol (iso-PrOH) or t-butanol (t-BuOH). The investigation of a preferential solvation model that considers the addition of small quantities of alcohol to water in the presence of bromophenol blue (BPB) is described in this paper. The data obtained were employed to study the preferential solvation (PS) of the probe. It was observed that with increases in the molar fraction of water the spontaneity of the system decreases. This can be explained by the high solubility of BPB in ethanol, with ∆G > 0 at higher wavelengths (region rich in water with violet solution) and ∆G < 0 at lower wavelengths (region rich in alcohol with yellow solution). The pK of the binary mixture changed in all solvents and for all ratios, and the higher the water ratio is the lower the pKIn will be. In binary mixture, an increase in the hydrogen bond acceptor (HBA) nature of the solvents tested resulted in a bathochromic effect on the absorption band of BPB (Δλ = 12 nm). All of the data obtained showed a good nonlinear fit with the mathematical model (SD ≤ 6.6 × 10-3), suggesting that BPB has other potential applications besides its use as a pH indicator.
Collapse
Affiliation(s)
- Anayana Z Dangui
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil
| | - Vanessa M S Santos
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil
| | - Benhur S Gomes
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil
| | - Taiane S de Castilho
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil
| | - Keller P Nicolini
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil
| | - Jaqueline Nicolini
- Instituto Federal do Paraná - IFPR, Lacoppi - Laboratório de Corantes e Processos Pirolíticos, Departamento de Química, Palmas, PR 85.555-000, Brazil.
| |
Collapse
|
12
|
Shokrollahi A, Ahmadi S. Determination of trace amounts of Brown HT as a food dye by a CPE-scanometry method. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - S. Ahmadi
- Department of Chemistry, Yasouj University Yasouj Iran
| |
Collapse
|
13
|
Włodarczyk E, Zarzycki PK. Chromatographic behavior of selected dyes on silica and cellulose micro-TLC plates: Potential application as target substances for extraction, chromatographic, and/or microfluidic systems. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1298028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Elżbieta Włodarczyk
- Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental, and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| | - Paweł K. Zarzycki
- Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental, and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| |
Collapse
|
14
|
Shishkin M, Volkov D, Pelivanov I, Proskurnin M. Direct solubility determination in optically dense solutions of highly soluble chromophores by the optoacoustic technique: Acidity dependence for Phenol Red. Anal Chim Acta 2017; 953:57-62. [DOI: 10.1016/j.aca.2016.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 11/25/2022]
|
15
|
Shokrollahi A, Firoozbakht. F. Determination of the acidity constants of neutral red and bromocresol green by solution scanometric method and comparison with spectrophotometric results. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|