1
|
Ding C, Guo J, Gan W, Chen P, Li Z, Yin Z, Qi S, Deng S, Zhang M, Sun Z. Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Tsai CK, Lee YC, Nguyen TT, Horng JJ. Levofloxacin degradation under visible-LED photo-catalyzing by a novel ternary Fe-ZnO/WO 3 nanocomposite. CHEMOSPHERE 2022; 298:134285. [PMID: 35304208 DOI: 10.1016/j.chemosphere.2022.134285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
As semiconductor photocatalysts showing their efficient redox ability upon illumination, new development of materials to enhance the pollution degradation is gaining popularity, especially on their oxidation ability. In this study, a highly stable ternary Fe-ZnO/WO3 nanocomposite photocatalyst has been synthesized in order to improve charge transfer of photocatalytic oxidation under 30W LED light (425-470 nm) to efficiency degrade the Levofloxacin (LVF) in the solution. This catalyst was characterized and analyzed by XRD, FE-SEM, HR-TEM, X-ray XPS, UPS, PL, TRPL, LSV, EIS, and Photocurrent. Various important factors for the photodegradation were investigated, including Fe content, initial LVF concentration, catalyst dosage, and solution pH. The optimal conditions were Fe 1.0 wt%, LVF 10 mg L-1, Fe-ZnO/WO3 dosage 0.5 g L-1, and pH 7 for LVF photodegradation up to 96% with a kinetic rate constant of 0.0342 min-1 and were stable in photodegradation efficiency (90%) after five test cycles. In the visible LED light, the activation bandgap was estimated to be 2.75 eV with high electron-hole pair separation and charge transfer from Fe-ZnO to WO3 that could enhance the generation of active species of •OH. Moreover, the more effective charge separation of Fe-ZnO/WO3 were confirmed by lower PL intensity and longer charge carrier lifetime. Fe-ZnO/WO3 also demonstrated the excellent electrochemical properties with high photocurrent and small resistance. For the LVF degradation, 3 possible pathways were proposed with 12 intermediate products. This study demonstrated that the synthesized Fe-ZnO/WO3 could serve as a reliable visible-light responsive photocatalysts with the potential for degrading antibiotics in solution.
Collapse
Affiliation(s)
- Cheng-Kuo Tsai
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Emergency Toxic Response Information Center, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.
| | - Yu-Chin Lee
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Thanh Tam Nguyen
- Faculty of Environment, University of Science (VNUHCM), Ho Chi Minh City, 700000, Viet Nam; Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Jao-Jia Horng
- Department of Safety Health and Environment, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan; Emergency Toxic Response Information Center, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|
3
|
Han Y, Lv W, Chen H, Li H, Chen J, Li Z, Qiu H. Chiral Fluorescent Silicon Nanoparticles for Aminopropanol Enantiomer: Fluorescence Discrimination and Mechanism Identification. Anal Chem 2020; 92:3949-3957. [DOI: 10.1021/acs.analchem.9b05442] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjuan Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Hui Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhan Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
4
|
Xiang Y, Xu Z, Zhou Y, Wei Y, Long X, He Y, Zhi D, Yang J, Luo L. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. CHEMOSPHERE 2019; 237:124464. [PMID: 31394454 DOI: 10.1016/j.chemosphere.2019.124464] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 05/06/2023]
Abstract
This present study reported the synthesis and characterization of a low-cost, environment friendly and high efficient biochar, ferromanganese modified biochar (Fe/Mn-BC) for the removal of levofloxacin (LEV) from aqueous medium. Fe/Mn-BC was synthesized through the facile co-precipitation of Fe, Mn with vinasse wastes and then pyrolysis under controlled conditions. The characterization of Fe/MnBC was analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman. Some influencing factors (e.g., pH, Fe/Mn-BC dosage, initial LEV concentration, ionic strength, contact time and temperature) were comprehensively investigated. The results manifested that the adsorption process of LEV onto Fe/Mn-BC was high pH dependence and the maximum adsorption capacity was achieved at pH 5. Moreover, the adsorption capacity of LEV was increased with increasing ionic strength. To gain a clearer perspective on the adsorption behavior of LEV onto Fe/Mn-BC, the adsorption kinetics and isotherms were also performed, revealing pseudo-second-order and Freundlich model had a better fitting effect. Reusability experiments indicated that Fe/Mn-BC could maintain a certain adsorption capacity for LEV after 5 recycles. Overall, this work showed that Fe/Mn-BC was an effective and promising adsorbent for eliminating LEV from aqueous medium.
Collapse
Affiliation(s)
- Yujia Xiang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhangyi Xu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Yuyi Wei
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Long
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yangzhou He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Al-Jabari MH, Sulaiman S, Ali S, Barakat R, Mubarak A, Khan SA. Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111249] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Khan AAP, Khan A, Asiri AM, Kashmery HA. Spectral and Mechanistic Investigation of Oxidation of Rizatriptan by Silver Third Periodate Complex in Aqueous Alkaline Medium. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s199079311803003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Kulkarni RM, Hanagadakar MS, Malladi RS, Shetti NP. Ag(I)-Catalyzed Chlorination of Linezolid during Water Treatment: Kinetics and Mechanism. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raviraj M. Kulkarni
- Department of Chemistry; KLS Gogte Institute of Technology (Autonomous); Affiliated to Visvesvaraya Technological University; Belagavi 590 008 India
| | - Manjunath S. Hanagadakar
- Department of Chemistry; SJPN Trust's Hirasugar Institute of Technology; Affiliated to Visvesvaraya Technological University; Nidasoshi 591 236 India
| | - Ramesh S. Malladi
- Department of Chemistry; KLS Gogte Institute of Technology (Autonomous); Affiliated to Visvesvaraya Technological University; Belagavi 590 008 India
| | - Nagaraj P. Shetti
- Department of Chemistry; KLE Institute of Technology; Affiliated to Visvesvaraya Technological University; Hubballi 580 030 India
| |
Collapse
|
8
|
Da Silva MKL, Plana Simões R, Cesarino I. Evaluation of Reduced Graphene Oxide Modified with Antimony and Copper Nanoparticles for Levofloxacin Oxidation. ELECTROANAL 2018. [DOI: 10.1002/elan.201800265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Rafael Plana Simões
- Sao Paulo State University (UNESP), School of Agriculture; Botucatu, SP Brazil
| | - Ivana Cesarino
- Sao Paulo State University (UNESP), School of Agriculture; Botucatu, SP Brazil
| |
Collapse
|
9
|
Tazwar G, Jain A, Mittal N, Devra V. Oxidation of Ciprofloxacin by Hexacyanoferrate(III) in the Presence of Cu(II) as a Catalyst: A Kinetic Study. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gajala Tazwar
- Department of Chemistry; J. D. B. Govt. Girls P. G. College; Kota 324 001 India
| | - Ankita Jain
- Department of Chemistry; J. D. B. Govt. Girls P. G. College; Kota 324 001 India
| | - Naveen Mittal
- Department of Chemistry; J. D. B. Govt. Girls P. G. College; Kota 324 001 India
| | - Vijay Devra
- Department of Chemistry; J. D. B. Govt. Girls P. G. College; Kota 324 001 India
| |
Collapse
|
10
|
Darweesh TM, Ahmed MJ. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:159-166. [PMID: 28189062 DOI: 10.1016/j.etap.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m2/g and pore volume of 0.638cm3/g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems.
Collapse
Affiliation(s)
- Teeba M Darweesh
- Department of Chemical Engineering, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq
| | - Muthanna J Ahmed
- Department of Chemical Engineering, University of Baghdad, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| |
Collapse
|
11
|
Khan AAP, Khan A, Asiri AM, Kulkarni RM, Alfaifi SYM, Alharthi SS. Deamination and decarboxylation of L-thyroxine by Chloroamine-T (CAT) in acidic medium: A mechanistic and kineitc study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2017. [DOI: 10.1134/s1990793116060221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|