1
|
Jiao X, Xiao M, Cai F, Fan Y, Meng S, Guan X, Wang H, Zhang C. Cascaded utilization of magnetite nanoparticles@onion-like carbons from wastewater purification to supercapacitive energy storage. Dalton Trans 2024; 53:18148-18160. [PMID: 39445703 DOI: 10.1039/d4dt02559h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Developing high-performance carbon-based materials for environmental and energy-related applications produces solid waste with secondary pollution to the environment at the end of their service lives. It is still challenging to utilize these functional materials in a sustainable manner in different fields. In this study, we demonstrate a cascaded utilization of an Fe3O4@onion-like carbon (Fe3O4@OLC) structure from wastewater adsorbents to a supercapacitor electrode. The structure was formed by carbonizing Fe3O4@oleic acid monodisperse nanoparticles into interconnected Fe3O4@OLCs and subsequent insufficient acid etching. The hollow OLCs in the outside region of the hybrid structure provide high surface area and the encapsulated Fe3O4 nanoparticles in the inside region offer high ferromagnetism. The three-dimensionally interconnected graphitic layers are advantageous for efficient separation and high conductivity. As a result, the maximum saturation adsorption capacity of insufficiently etched interconnected Fe3O4@OLCs can reach up to 90.2 mg g-1 and they can be efficiently separated under a magnetic field. Furthermore, the hybrid structure is thermally transformed into N-doped HOLCs, which are demonstrated to be a high-performance supercapacitor electrode with high specific capacitance and high electrochemical stability. The cascaded utilization of the hybrid structure in this study is meaningful for eco-friendly development of functional materials for environmental and energy storage applications.
Collapse
Affiliation(s)
- Xin Jiao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
- College of Materials Engineering, Shanxi College of Technology, Shuozhou, Shanxi Province 036000, PR China
| | - Min Xiao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| | - Fengshi Cai
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| | - Yingchun Fan
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| | - Shuaipeng Meng
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| | - Xiude Guan
- College of Materials Engineering, Shanxi College of Technology, Shuozhou, Shanxi Province 036000, PR China
| | - Huiquan Wang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| | - Chenguang Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
- Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin 300384, PR China
- Tianjin Key Laboratory for Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, PR China
- Key Laboratory of Display Materials and Photoelectric Devices, Tianjin University of Technology, Ministry of Education, Tianjin 300384, PR China
| |
Collapse
|
2
|
Ibrahim FM, El-Liethy MA, Abouzeid R, Youssef AM, Mahdy SZA, El Habbasha ES. Preparation and characterization of pectin/hydroxyethyl cellulose/clay/TiO 2 bionanocomposite films for microbial pathogen removal from contaminated water. Int J Biol Macromol 2024; 274:133511. [PMID: 38944095 DOI: 10.1016/j.ijbiomac.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Some of conventional wastewater disinfectants can have a harmful influence on the environment as well as human health. The aim of this investigation was synthesis and characterizes ecofriendly pectin/hydroxyethyl cellulose (HEC)/clay and pectin/HEC/clay incorporated with titanium dioxide nanoparticles (TiO2NPs) and use the prepared bionanocomposite as microbial disinfectants for real wastewater. Pectin/HEC/clay and pectin/HEC/clay/TiO2 bionanocomposite were characterized by various methods including X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Mechanical properties and water vapor permeability (WVP) were carried out. The results of SEM showed that, the prepared bionanocomposite had a smooth surface. Additionally, TiO2 nanoparticles to the pectin/HEC/clay composites may lead to changes in the FTIR spectrum. The intensity of XRD peaks indicated that, TiO2NPs was small size crystallite. TGA illustrated that pectin has moderate thermal stability, while HEC generally exhibits good thermal stability. The TEM showed that, TiO2 nanoparticles have diameters <25 nm. On the other hand, antimicrobial activities of pectin/HEC/clay against Escherichia coli (E. coli), Staphylococcus aureus and Candida albicans have been enhanced by adding TiO2NPs. The minimum inhibitory concentration (MIC) of pectin/HEC/clay/TiO2 against E. coli was 200 mg/mL. Moreover, complete eradication of E. coli, Salmonella and Candida spp. from real wastewater was observed by using pectin/HEC/clay/TiO2 bionanocomposite. Finally, it can be concluded that, the synthesized bionanocomposite is environmentally friendly and considered an excellent disinfectant matter for removal of the microbial pathogens from wastewater to safely reuse.
Collapse
Affiliation(s)
- Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622 Giza, Egypt.
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Sara Z A Mahdy
- Chemistry Department, Faculty of Science, Benha University, Cairo, Egypt
| | - El Sayed El Habbasha
- Field crops Research Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Shayo GM, Elimbinzi E, Shao GN. Water-based technologies for improving water quality at the point of use: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1940. [PMID: 38456325 DOI: 10.1002/wnan.1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 03/09/2024]
Abstract
Water safety concerns are increasing tremendously as a result of the rising population and environmental pollution. As a result, viable water treatment approaches need to be designed to meet the water consumption demands of the population, particularly in developing countries. The recent technological advances in water treatment and purification are well articulated in this review. The efficiency of the materials used for purification and their affordability for people living in rural and remote settlements in various parts of the world have been discussed. Water treatment techniques prior to the rapid advancement of science and technology included a variety of strategies such as coagulation/flocculation, filtration, disinfection, flotation and pH correction. The use of nanotechnology in water treatment and purification has modernized the purification process. Therefore, efficient removal of microbes such as bacteria and viruses are exquisitely accomplished. These technologies may include membrane filtration, ultraviolet irradiation, advanced oxidation ion-exchange and biological filtration technologies. Thus, nanotechnology allows for the fabrication of less expensive systems, allowing even low-income people to benefit from it. Most developing countries find these technologies particularly valuable because access to clean and safe water for drinking and residential needs is critical. This is because access to municipal water supplies is also difficult. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Godfrey M Shayo
- Department of Chemistry, University of Dar es Salaam, Mkwawa College, Iringa, Tanzania
| | - Elianaso Elimbinzi
- Department of Chemistry, University of Dar es Salaam, Mkwawa College, Iringa, Tanzania
| | - Godlisten N Shao
- Department of Chemistry, University of Dar es Salaam, Mkwawa College, Iringa, Tanzania
| |
Collapse
|
4
|
Li WW, Cheng L, Liu J, Yang SY, Zan ST, Zhao GC. Recyclable magnetic Fe 3O 4@C for methylene blue removal under microwave-induced reaction system. CHEMOSPHERE 2023; 310:136821. [PMID: 36241116 DOI: 10.1016/j.chemosphere.2022.136821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The reclamation and removal of organic pollutants are difficult issues of world concern. In this study, a microwave-induced reaction system (MIRS) is applied to synthesize the multifunctional composite of Fe3O4@C, which is employed to adsorb, separate and catalytic oxide the typical organic dye of methylene blue (MB). SEM, TEM, VSM, XPS, pHpzc, and N2 adsorption performances are carried out to characterize the Fe3O4@C. Results show that the Fe3O4@C mainly consists of activated Fe-O-C microspheres, which possess plentiful mesopore and macropore structures on surfaces. Batch adsorption experiments were carried out by varying key reaction conditions to optimize these. The maximum adsorption capacity of MB onto the Fe3O4@C was 305.0 mg g-1 in 120 min, at pH 10, and at a temperature of 323 K. MIRS was also assisted to regenerate the spent Fe3O4@C which presented good regeneration efficiency by sustaining 16 regeneration cycles without any oxidizing agent. SEM images and FTIR spectrum verified that MB would translate into greater or smaller-sized carbon microspheres. What's more, the adsorption of MB onto both initial and the 16th regenerated Fe3O4@C obeyed the Langmuir isotherm model and followed the pseudo-second-order adsorption kinetics, indicating the adsorptive stability after regeneration. In this study, the Fe3O4@C combined with MIRS may be one innovative strategy for organic pollutants' complete removal in the future.
Collapse
Affiliation(s)
- Wen-Wen Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Long Cheng
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Jing Liu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Shi-Yong Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Shu-Ting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China
| | - Guang-Chao Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, PR China.
| |
Collapse
|
5
|
Facile Preparation of Porous Carbon Derived from Pomelo Peel for Efficient Adsorption of Methylene Blue. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103096. [PMID: 35630572 PMCID: PMC9144290 DOI: 10.3390/molecules27103096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
Abstract
Pomelo peel waste-derived porous carbon (PPPC) was prepared by a facile one-step ZnCl2 activation method. The preparation parameters of PPPC were the mass ratio of ZnCl2 to pomelo peel of 2:1, carbonization temperature of 500 °C, and carbonization time of 1 h. This obtained PPPC possessed abundant macro-,meso-, and micro-porous structures, and a large specific surface area of 939.4 m2 g-1. Surprisingly, it had excellent adsorption ability for methylene blue, including a high adsorption capacity of 602.4 mg g-1 and good reusability. The adsorption isotherm and kinetic fitted with Langmuir and pseudo-second order kinetic models. This work provides a novel strategy for pomelo peel waste utilization and a potential adsorbent for treating dye wastewater.
Collapse
|
6
|
Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0905-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Tran HV, Thi Kim Do O, Nguyen ND, Huynh CD. Synthesis of amorphous carbon functionalized Fe 3O 4 nanoparticles as a smart nanosorbent for organic dyes removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj01246d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of process for synthesis of carbon coated Fe3O4 (CCF) nanocomposites and their application as nanosorbents with recoverability and regenerability for the sorption of organic dyes.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Oanh Thi Kim Do
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Nghia Duc Nguyen
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Chinh Dang Huynh
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
8
|
Tran HTT, Hoang LT, Tran HV. Electrochemical Synthesis of Graphene from Waste Discharged Battery Electrodes and Its Applications to Preparation of Graphene/Fe
3
O
4
/Chitosan‐Nanosorbent for Organic Dyes Removal. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huyen Thi Thu Tran
- Department of Inorganic Chemistry School of Chemical Engineering Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| | - Ly Thanh Hoang
- Department of Inorganic Chemistry School of Chemical Engineering Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
- Department of Petroleum Military Logistics College No.1 Son Tay Town Hanoi Vietnam
| | - Hoang Vinh Tran
- Department of Inorganic Chemistry School of Chemical Engineering Hanoi University of Science and Technology (HUST) 1st Dai Co Viet Road Hanoi Vietnam
| |
Collapse
|
9
|
A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Magnetic Core-Shell Fe 3O 4@C/Au Nanoparticle Nanocomposite. Int J Anal Chem 2021; 2021:8839895. [PMID: 33747085 PMCID: PMC7960058 DOI: 10.1155/2021/8839895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Fe3O4@C/Au nanoparticle (AuNP) nanocomposites were prepared through electrostatic adsorption of AuNPs onto PDDA-functionalized core/shell Fe3O4@C magnetic nanospheres, which had been synthesized by a facile solvothermal method. The morphology and composition of the nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), etc. Moreover, highly electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) was also exhibited on the Fe3O4@C/AuNP-modified indium tin oxide (ITO) electrode. The effect of solution pH and the modification amount of Fe3O4@C/AuNPs on the performance of electrocatalytic H2O2 reduction was investigated. Under the optimal conditions, the catalytic current showed a linear relationship with the increase of H2O2 concentration in the range of 0.007–15 mM and a detection limit of 5 μM. The H2O2 sensor showed high selectivity for H2O2 detection, which could effectively resist the interference of ascorbic acid (AA), uric acid (UA), and citric acid (CA). Finally, the H2O2 sensor was used in the real fetal bovine serum to detect H2O2 and obtained satisfactory results with the recovery values ranging from 95.14 to 103.6%.
Collapse
|
10
|
Xiang H, Ren G, Zhong Y, Xu D, Zhang Z, Wang X, Yang X. Fe 3O 4@C Nanoparticles Synthesized by In Situ Solid-Phase Method for Removal of Methylene Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:330. [PMID: 33513986 PMCID: PMC7912336 DOI: 10.3390/nano11020330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022]
Abstract
Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.
Collapse
Affiliation(s)
- Hengli Xiang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Genkuan Ren
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
- College of Chemistry and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Dehua Xu
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Zhiye Zhang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Xiushan Yang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| |
Collapse
|
11
|
|
12
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|
13
|
Zhang W, Li H, Tang J, Lu H, Liu Y. Ginger Straw Waste-Derived Porous Carbons as Effective Adsorbents toward Methylene Blue. Molecules 2019; 24:E469. [PMID: 30696112 PMCID: PMC6384592 DOI: 10.3390/molecules24030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022] Open
Abstract
In this work, ginger straw waste-derived porous carbons, with high adsorption capacity, high adsorption rate, and good reusability for removing the toxic dye of methylene blue from wastewater, were prepared by a facile method under oxygen-limiting conditions. This study opens a new approach for the utilization of ginger straw waste, and the porous materials can be employed as great potential adsorbents for treating dye wastewater.
Collapse
Affiliation(s)
- Wenlin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Huihe Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Hongjia Lu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Yiqing Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, College of Forestry & Life Science, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| |
Collapse
|
14
|
Plasticizer incorporated, novel eco-friendly bio-polymer based solid bio-membrane for electrochemical clean energy applications. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
|
16
|
Carbon-Based Fe₃O₄ Nanocomposites Derived from Waste Pomelo Peels for Magnetic Solid-Phase Extraction of 11 Triazole Fungicides in Fruit Samples. NANOMATERIALS 2018; 8:nano8050302. [PMID: 29734765 PMCID: PMC5977316 DOI: 10.3390/nano8050302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022]
Abstract
Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits.
Collapse
|
17
|
Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Al-Hussain SA, Ezzat AO, Gaffer AK, Atta AM. Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2-acrylamido-2-methylpropane sodium sulfonate cryogels. POLYM INT 2017. [DOI: 10.1002/pi.5492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sami A Al-Hussain
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Abdelrhman O Ezzat
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Amany K Gaffer
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
| | - Ayman M Atta
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
- Chemistry Department, College of Science; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
19
|
Xia T, Ma Q, Hu T, Su X. A novel magnetic/photoluminescence bifunctional nanohybrid for the determination of trypsin. Talanta 2017; 170:286-290. [DOI: 10.1016/j.talanta.2017.03.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 01/10/2023]
|
20
|
Zhang W, Zhou Z. Citrus Pectin-Derived Carbon Microspheres with Superior Adsorption Ability for Methylene Blue. NANOMATERIALS 2017; 7:nano7070161. [PMID: 28665303 PMCID: PMC5535227 DOI: 10.3390/nano7070161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 11/26/2022]
Abstract
In this study, citrus pectin-derived, green, and tunable carbon microspheres with superior adsorption capacity and high adsorption rate, as well as good reusability toward methylene blue adsorption, were prepared by a facile hydrothermal method without any hazardous chemicals. The materials hold great potential for the treatment of methylene blue wastewater.
Collapse
Affiliation(s)
- Wenlin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
21
|
Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Citrus pectin derived porous carbons as a superior adsorbent toward removal of methylene blue. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|