1
|
Nyamato GS, Kabogo IT, Maqinana S, Bachmann R, Schmitz M, Ogunah J, Kleist W, Ojwach SO. Removal, mechanistic and kinetic studies of Cr(VI), Cd(II), and Pb(II) cations using Fe 3O 4 functionalized Schiff base chelating ligands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63374-63392. [PMID: 39485661 DOI: 10.1007/s11356-024-35443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The Schiff base chelating ligands; (E)-2-(3,3-dimethoxy-2-oxa-7,10-diaza-3-silaundec-10-en-11-yl)phenol (L1), (E)-N-(2-((pyridine-2ylmethylene)amino)ethyl)-3-(trimethoxysilyl)propan-1-amine (L2) and (E)-N-(2-((thiophen-2-ylmethylene)amino)ethyl)-3-(trimethoxysilyl)propan-1-amine (L3) were immobilized on Fe3O4 magnetic nanoparticles (MNPs) and utilized in the extraction of Cr(VI), Cd(II) and Pb(II) metal cations from aqueous solutions. The compounds synthesized, denoted as L1@ Fe3O4, L2@Fe3O4, and L3@Fe3O4, were characterized using FT-IR spectroscopy, TEM-SEM, VSM, and BET/BHJ techniques for analysis of functional groups, surface morphology, magnetic properties, and degree of porosity of the adsorbents, respectively. BET/BHJ technique confirmed the mesoporous nature of the compounds as their pore diameters ranged between 15 and 17 nm. The initial optimization conditions of pH, adsorbent dosage, initial metal concentration, and contact time on adsorption were studied using L1@ Fe3O4. The optimum efficiencies recorded were 68% and 46% for Cr(VI) and Cd(II), respectively, obtained at pH 3, and a metal concentration of 20 ppm while an efficiency of 99% was recorded for Pb(II) cations at pH 7 and a metal concentration of 100 ppm. Compounds L2@Fe3O4 and L3@ Fe3O4 were also used in the extraction of metal cations from aqueous solution and gave efficiencies of 22%, 56%, and 78% for L2@ Fe3O4 and 19%, 90%, and 59% using L3@ Fe3O4 for Cr(VI), Cd(II), and Pb(II), respectively. The maximum adsorption capacities of L1@ Fe3O4 for Cr(VI), Cd(II), and Pb(II) cations were obtained from the Langmuir isotherm as 32.84, 41.77, and 450.45 mg/g, respectively. The experimental data was analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models. Both linear and non-linear forms of kinetic isotherms; Langmuir, Freundlich, Redlich-Peterson, and Temkin were utilized to investigate the nature of adsorption on L1@Fe3O4. The mechanistic studies deduced that the Langmuir isotherm and pseudo-second-order kinetic model better described the adsorption process both yielding high correlation coefficient values (R2 > 0.98).
Collapse
Affiliation(s)
- George S Nyamato
- Department of Physical Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya.
| | - Ian T Kabogo
- Department of Physical Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya
| | - Siphosethu Maqinana
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - Rene Bachmann
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Markus Schmitz
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Joanne Ogunah
- Department of Physical Sciences, University of Embu, P.O Box 6-60100, Embu, Kenya
| | - Wolfgang Kleist
- Fachbereich Chemie, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 54, 67663, Kaiserslautern, Germany
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
2
|
Tarhouchi S, Hlaibi M. Kinetic control aspects and mechanisms in oriented membrane processes for extraction and recovery of ascorbic acid compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63033-63048. [PMID: 39470909 DOI: 10.1007/s11356-024-35453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Ascorbic acid comprises four enantiomers, with only one of them, L-ascorbic acid, recognized as vitamin C. The modern industries place significant importance on obtaining this compound in its purest form. The challenge is to recover L-ascorbic acid, which requires specific processes within these industries. To satisfy this condition, purification is needed, a process that requires large quantities of solvents and high energy consumption. To overcome these limitations, we conducted a study on the facilitated extraction of L-ascorbic acid using three affinity polymer membranes, including supported liquid membrane (SLM), polymer inclusion membrane (PIM), and grafted polymer membranes (GPM) with cholic acid as the extractive agent. Following the characterization of the membranes using IR spectroscopy and SEM techniques, we investigated various parameters associated with substrate diffusion through the organic membrane phase. Regarding the biologically active L-ascorbic acid, our research findings indicated that kinetic factors drove the mechanisms of the studied processes.
Collapse
Affiliation(s)
- Sanae Tarhouchi
- Laboratoire Génie Des Matériaux Pour Environnement Et Valorisation (GeMEV), Equipe I3MP, Faculté Des Sciences Aïn Chock, Université Hassan II (UH2C), B.P. 5366, Maârif, Casablanca, Maroc, Morocco.
| | - Miloudi Hlaibi
- Laboratoire Génie Des Matériaux Pour Environnement Et Valorisation (GeMEV), Equipe I3MP, Faculté Des Sciences Aïn Chock, Université Hassan II (UH2C), B.P. 5366, Maârif, Casablanca, Maroc, Morocco
| |
Collapse
|
3
|
El Mahdaoui A, Radi S, Draoui Y, El Massaoudi M, Ouahhoud S, Asehraou A, Bentouhami NE, Saalaoui E, Benabbes R, Robeyns K, Garcia Y. Synthesis, Crystal Structures, Genotoxicity, and Antifungal and Antibacterial Studies of Ni(II) and Cd(II) Pyrazole Amide Coordination Complexes. Molecules 2024; 29:1186. [PMID: 38474698 DOI: 10.3390/molecules29051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we synthesized two coordination complexes based on pyrazole-based ligands, namely 1,5-dimethyl-N-phenyl-1H-pyrazole-3-carboxamide (L1) and 1,5-dimethyl-N-propyl-1H-pyrazole-3-carboxamide (L2), with the aim to investigate bio-inorganic properties. Their crystal structures revealed a mononuclear complex [Ni(L1)2](ClO4)2 (C1) and a dinuclear complex [Cd2(L2)2]Cl4 (C2). Very competitive antifungal and anti-Fusarium activities were found compared to the reference standard cycloheximide. Additionally, L1 and L2 present very weak genotoxicity in contrast to the observed increase in genotoxicity for the coordination complexes C1 and C2.
Collapse
Affiliation(s)
- Amal El Mahdaoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Mohamed El Massaoudi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
- Faculty of Medicine and Pharmacy, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Nour Eddine Bentouhami
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Redouane Benabbes
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Abate C, Scala A, Giuffrè O, Piperno A, Pistone A, Foti C. From speciation study to removal of Pb 2+ from natural waters by a carnosine-based polyacrylamide/azlactone copolymer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117572. [PMID: 36848805 DOI: 10.1016/j.jenvman.2023.117572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
A deep speciation study on L-carnosine (CAR) and Pb2+ system was performed in aqueous solution with the aim to assess its potential use as a sequestering agent of metal cation. To determine the best conditions for Pb2+ complexation, potentiometric measurements were carried out over a wide range of ionic strength (0.15 ≤ I/≤ 1 mol/L) and temperature (15 ≤ T/°C ≤ 37), and thermodynamic interaction parameters (logβ, ΔH, ΔG and TΔS) were determined. The speciation studies allowed us to simulate sequestration ability of CAR toward Pb2+ under different conditions of pH, ionic strength and temperature and to establish a priori the conditions for the best removal performance, i.e., pH > 7 and I = 001 mol/L. This preliminary investigation was very useful in optimizing removal procedures and limiting subsequent experimental measurements for adsorption tests. Therefore, to exploit the binding ability of CAR for Pb2+ removal from aqueous solutions, CAR was covalently grafted on an azlactone-activated beaded-polyacrylamide resin (AZ) using an efficient click coupling reaction (78.3% of coupling efficiency). The carnosine-based resin (AZCAR) was analyzed by ThermoGravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA). Morphology, surface area and pore size distribution were studied through a combination of Scanning Electron Microscope (SEM) and adsorption/desorption of N2 analyses according to the Brunauer-Emmett-Teller (BET) and Barret-Johner-Halenda (BJH) approaches. The adsorption capacity of AZCAR toward Pb2+ was investigated under conditions simulating the ionic strength and pH of different natural waters. The time needed to reach equilibrium in the adsorption process was 24 h, and the best performance was obtained at pH > 7, typical of most natural waters, with removal efficiency ranging from 90.8% (at I = 0.7 mol/L) to 99.0 (at I = 0.001 mol/L).
Collapse
Affiliation(s)
- Chiara Abate
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Ottavia Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessandro Pistone
- Department of Engineering, University of Messina, Contrada Di Dio I, 98166 Messina, Italy
| | - Claudia Foti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
5
|
Wang Q, Zhu S, Xi C, Zhang F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 2022; 10:814643. [PMID: 35308790 PMCID: PMC8931339 DOI: 10.3389/fchem.2022.814643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the problem of heavy metal pollution has become increasingly prominent, so it is urgent to develop new heavy metal adsorption materials. Compared with many adsorbents, the polyamide-amine dendrimers (PAMAMs) have attracted extensive attention of researchers due to its advantages of macro-molecular cavity, abundant surface functional groups, non-toxicity, high efficiency and easy modification. But in fact, it is not very suitable as an adsorbent because of its solubility and difficulty in separation, which also limits its application in environmental remediation. Therefore, in order to make up for the shortcomings of this material to a certain extent, the synthesis and development of polymer composite materials based on PAMAMs are increasingly prominent in the direction of solving heavy metal pollution. In this paper, the application of composites based on PAMAMs and inorganic or organic components in the adsorption of heavy metal ions is reviewed. Finally, the prospects and challenges of PAMAMs composites for removal of heavy metal ions in water environment are discussed.
Collapse
|
6
|
Güçoğlu M, Şatıroğlu N. Adsorption of Pb(II), Cu(II), Cd(II), Ni(II), and Co(II) ions by newly synthesized 2-(2′-Hydroxyphenyl)Benzothiazole-functionalized silica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Tighadouini S, Radi S, Roby O, Hammoudan I, Saddik R, Garcia Y, Almarhoon ZM, Mabkhot YN. Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu(ii) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material. RSC Adv 2021; 12:611-625. [PMID: 35424512 PMCID: PMC8978821 DOI: 10.1039/d1ra06640d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The removal of heavy metals is attracting considerable attention due to their undesirable effects on the environment. In this investigation, a new adsorbent based on silica functionalized with pyridin-2-ylmethanol (SiPy) was successfully synthesized to yield to a hybrid material. FTIR, SEM, TGA, and specific surface area analysis were used to characterize the structure and morphology of the SiPy hybrid material. Various heavy metal ions such as Cu(ii), Zn(ii), Cd(ii), and Pb(ii) were selected to examine the adsorption efficiency of the newly prepared adsorbent, optimized at varying solution pH, contact time, concentration, and temperature. The adsorbent SiPy displayed good adsorption capacity of 90.25, 75.38, 55.23, and 35.12 mg g−1 for Cu(ii), Zn(ii), Cd(ii), and Pb(ii), respectively, at 25 min and pH = 6. The adsorption behaviors of metal ions onto the SiPy adsorbent fitted well with the pseudo-second-order kinetic mode and the isotherm was better described by the Langmuir isotherm. The thermodynamic studies disclose spontaneous and endothermic adsorption process. Furthermore, the SiPy adsorbent retained good selectivity and regeneration properties after five adsorption–desorption cycles of Cu(ii). A computational investigation of the adsorption mechanism indicates that the N-pyridine, O-hydroxyl, and ether O-atoms play a predominant role during the capture of Cu(ii), Zn(ii), Cd(ii), and Pb(ii). This study proposes the SiPy adsorbent as an attractive material for the selective removal of Cu(ii) from real river water and real industrial wastewater. The removal of heavy metals is attracting considerable attention due to their undesirable effects on the environment.![]()
Collapse
Affiliation(s)
- Said Tighadouini
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Smaail Radi
- University Mohammed First, Faculty of Sciences, Laboratory of Applied Chemistry and Environment (LCAE) 60000 Oujda Morocco
| | - Othmane Roby
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Imad Hammoudan
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Rafik Saddik
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University P.O. Box 960 Abha 61421 Saudi Arabia
| |
Collapse
|
8
|
A Highly Efficient Environmental-Friendly Adsorbent Based on Schiff Base for Removal of Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2021; 26:molecules26175164. [PMID: 34500598 PMCID: PMC8434251 DOI: 10.3390/molecules26175164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Removal of heavy metals from drinking water sources and rivers is of strategic health importance and is essential for sustainable ecosystem development, in particular in polluted areas around the globe. In this work, new hybrid inorganic-organic material adsorbents made of ortho- (Si-o-OR) or para-Schiff base silica (Si-p-OR) were synthesized and characterized in depth. These hybrid adsorbents show a high selectivity to Cu(II), even in the presence of competing heavy metals (Zn(II), Cd(II), and Pb(II)), and also demonstrate great reusability after five adsorption-desorption cycles. Maximum sorption capacity for Cu(II) was found for Si-o-OR (79.36 mg g−1) and Si-p-OR (36.20 mg g−1) in no less than 25 min. Energy dispersive X-ray fluorescence and Fourier transform-infrared spectroscopy studies demonstrate that this uptake occurs due to a chelating effect, which allows these adsorbents to trap Cu(II) ions on their surfaces; this result is supported by a theoretical study for Si-o-OR. The new adsorbents were tested against real water samples extracted from two rivers from the Oriental region of Morocco.
Collapse
|
9
|
Solanki SH, Patil SR. Phase Studies and Efficient Recovery of Inorganic Metal Salts from the Microemulsion System Using a Sugar-Based Non-Ionic Surfactant. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present work, the phase behaviour of the microemulsion system formulated by using water, organic solvent, and a sugar-based non-ionic surfactant was investigated in detail. We have used a sugar-based non-ionic surfactant for formulation of microemulsion, as it is a greener alternative for the formulation of a microemulsion system, owing to the following aspects: a) better physicochemical properties as compared to that of the conventional non-ionic surfactants, b) non-toxicity, and c) biodegradability. The extraction of heavy metal ions from the metal complexes as well as the recovery efficiency of heavy metal ions using a microemulsion system has been investigated. The maximum absorbance values of metal ions, after recovery from the metal complexes, were measured. Moreover, the UV-Visible spectrophotometric studies revealed that the absorbance increases with an increase in metal ion concentration in the aqueous phase while its value decreases with an increase in the concentration of potassium thiocyanate in the aqueous phase after the extraction of the metal ions from the metal complexes. Furthermore, it has also been evaluated that 4.0 mol/L potassium thiocyanate is the optimum concentration required for efficient recovery of 0.05 mol/L cobalt ion as well as nickel ions. The recovery efficiency of cobalt ions was found to be 97%, whereas that of nickel ions was determined to be 94% respectively. In addition to being an environmentally friendly approach, the present work is an economically viable option too, as it deals with the studies related to the extraction and efficient recovery of metal ions.
Collapse
Affiliation(s)
| | - Sandeep R. Patil
- School of Engineering and Technology, Navrachana University , Vadodara - , India
| |
Collapse
|
10
|
Cellulose Schiff base-supported Pd(II): An efficient heterogeneous catalyst for Suzuki Miyaura cross-coupling. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04528-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Mo Y, Zhang Y, Vincent T, Faur C, Guibal E. Investigation of mercury(II) and copper(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Carbohydr Polym 2021; 257:117588. [PMID: 33541633 DOI: 10.1016/j.carbpol.2020.117588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
This study investigates Hg(II) and Cu(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Batch experiments are conducted to assess the metal sorption performance. FTIR and SEM-EDX analyses are used to identify metal binding mechanism. The sorption kinetics are better fitted by the pseudo-second-order-equation compared to the pseudo-first-order-equation. Three isotherms are compared for fitting the sorption in mono-component solutions and the Sips model gives the best simulation of experimental data. The competitive-Sips model fits well sorption data in Hg-Cu binary solutions and finds that the Cu uptake is drastically reduced by Hg competition. Copper(II) uptake remains negligible at low pH whereas it increases with pH up to 6 because of material deprotonation. Mercury(II) sorption behaves differently, it slightly changes from pH 1 (qeq: 0.76 mmol g-1) to pH 6 (qeq: 0.84 mmol g-1) due to chloro-anion formation. Therefore, playing with the pH allows separating Hg(II) from Cu(II).
Collapse
Affiliation(s)
- Yayuan Mo
- College of Environment and Resources, Guangxi Normal University, Guilin, China; PCH, IMT Mines Ales, Ales, France.
| | | | | | - Catherine Faur
- IEM, Institut Européen des Membranes, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
12
|
Alhokbany N, Ahamad T, Naushad M, Alshehri SM. Feasibility of toxic metal removal from aqueous medium using Schiff-base based highly porous nanocomposite: Adsorption characteristics and post characterization. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111598] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Synthesis and characterization of novel organic–inorganic hybrid nanocomposites of phosphate–benzimidazole by soft chemistry route in aqueous media. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions. Carbohydr Polym 2019; 222:114971. [DOI: 10.1016/j.carbpol.2019.114971] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/16/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
|
15
|
Radi S, Abiad CE, Moura NMM, Faustino MAF, Neves MGPMS. New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: Synthesis, characterization, isotherms, kinetics and thermodynamics studies. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:80-90. [PMID: 29150138 DOI: 10.1016/j.jhazmat.2017.10.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 05/28/2023]
Abstract
The pollution of water resources due to the disposal of toxic heavy metals has been a growing global concern for the last decades. For this purpose, the search for effective and economic material based adsorbents is required, due to the efficiency of the process. In this work, a novel inorganic-organic hybrid material based on silica chemically modified with a porphyrin (SiNTPP), with a high metal removal efficiency, was developed. The new material was characterized using a set of suitable techniques such as 13C NMR of the solid state, elemental analysis, FTIR, nitrogen adsorption-desorption isotherm, BET surface area, BJH pore sizes and scanning electron microscopy (SEM). The new material surface exhibits good chemical and thermal stability based on the obtained thermogravimetric curves (TGA). An adsorption study was accomplished to investigate the effect of porphyrin-silica hybrid on the removal of Pb(II), Zn(II), Cd(II) and Cu(II) from aqueous solutions using a batch method. The effect of various parameters, such as initial metal concentration, pH, temperature, as well as the kinetics and thermodynamics for sorption on SiNTPP were investigated. The studies demonstrate that adsorption is fast, as proved by the equilibrium achievement within 25min. The metals removal from aqueous solution are better adapted to the Langmuir isotherm model than to the Freundlich model. The thermodynamic parameters (ΔG°, ΔH° and ΔS°) disclose that the process was endothermic and spontaneous in nature, and the adsorption process follows a pseudo-second order kinetics. The adsorbent can be regenerated continuously without affecting its extraction percentage. Its effectiveness is highly justified compared to previous described materials.
Collapse
Affiliation(s)
- Smaail Radi
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco.
| | - Chahrazad El Abiad
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Nuno M M Moura
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Tighadouini S, Radi S, Elidrissi A, Zaghrioui M, Garcia Y. Selective Confinement of Cd
II
in Silica Particles Functionalized with β‐Keto‐Enol‐Bisfuran Receptor: Isotherms, Kinetic and Thermodynamic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Said Tighadouini
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
| | - Smaail Radi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
- Centre de l'Oriental des Sciences et Technologies de l'Eau (COSTE) Université Med I 60000 Oujda Morocco
| | - Abderrahman Elidrissi
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences Université Mohamed I 60 000 Oujda Morocco
| | - Mustapha Zaghrioui
- Laboratoire GREMAN CNRS‐UMR 7347 IUT de BLOIS Université François‐Rabelais de Tours 15 Rue de la Chocolaterie 41029 Blois France
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences Université catholique de Louvain Place Louis Pasteur 1 1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
17
|
Mohammedi H, Miloudi H, Tayeb A, Bertagnolli C, Boos A. Study on the extraction of lanthanides by a mesoporous MCM-41 silica impregnated with Cyanex 272. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Mahmoud ME, Osman MM, Yakout AA, Abdelfattah AM. Water and soil decontamination of toxic heavy metals using aminosilica-functionalized-ionic liquid nanocomposite. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Zhang P, Niu Y, Qiao W, Xue Z, Bai L, Chen H. Experimental and DFT investigation on the adsorption mechanism of silica gel supported sulfur-capped PAMAM dendrimers for Ag(I). J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Biosorption of cadmium using a novel, renewable and recoverable modified natural cellulose bearing chelating Schiff base ligand based on 2-hydroxy-5-methyl benzaldehyde. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0623-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Mehraban M, Manoochehri M, Afshar Taromi F. Trace amount determination of Cd(ii), Pb(ii) and Ni(ii) ions in agricultural and seafood samples after magnetic solid phase extraction by MIL-101(Cr)/phenylthiosemicarbazide-functionalized magnetite nanoparticle composite. NEW J CHEM 2018. [DOI: 10.1039/c8nj03912g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel nanosorbent consisting of phenylthiosemicarbazide magnetite nanoparticles and MIL-101(Cr) was synthesized, characterized and utilized to magnetic solid phase extraction of some heavy metals in various agricultural and seafood samples.
Collapse
Affiliation(s)
- Masoomeh Mehraban
- Department of Chemistry
- Central Tehran Branch
- Islamic Azad University
- Tehran
- Iran
| | | | | |
Collapse
|
22
|
Trace amounts of Cd(II), Cu(II) and Pb(II) ions monitoring using Fe 3 O 4 @graphene oxide nanocomposite modified via 2-mercaptobenzothiazole as a novel and efficient nanosorbent. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Radi S, El Massaoudi M, Bacquet M, Degoutin S, Adarsh NN, Robeyns K, Garcia Y. A novel environment-friendly hybrid material based on a modified silica gel with a bispyrazole derivative for the removal of ZnII, PbII, CdIIand CuIItraces from aqueous solutions. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00322f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New surface-functionalized with bispyrazole receptor was designed for efficient removal of heavy metals. The architecture of host–guest on the surface was identified.
Collapse
Affiliation(s)
- Smaail Radi
- Laboratoire de Chimie Appliquée et Environnement (LCAE)
- Faculté des Sciences
- Université Mohamed I
- 60 000 Oujda
- Morocco
| | - Mohamed El Massaoudi
- Laboratoire de Chimie Appliquée et Environnement (LCAE)
- Faculté des Sciences
- Université Mohamed I
- 60 000 Oujda
- Morocco
| | - Maryse Bacquet
- Unité Matériaux et Transformations UMR8207 (UMET)
- Equipe Ingénierie des Systèmes Polymères
- Université des Sciences et Technologies de Lille
- 119-59655 Villeneuve d'Ascq
- France
| | - Stéphanie Degoutin
- Unité Matériaux et Transformations UMR8207 (UMET)
- Equipe Ingénierie des Systèmes Polymères
- Université des Sciences et Technologies de Lille
- 119-59655 Villeneuve d'Ascq
- France
| | - N. N. Adarsh
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids
- Reactivity (IMCN/MOST)
- Université Catholique de Louvain
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids
- Reactivity (IMCN/MOST)
- Université Catholique de Louvain
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids
- Reactivity (IMCN/MOST)
- Université Catholique de Louvain
| |
Collapse
|