1
|
Rodríguez-Díaz M, Pérez FE, Manosalva PM, Cerda JI, Martínez-Contreras CF, Mora AY, Villagra NA, Bucarey SA, Barriga A, Escobar J, Martínez JL, Hidalgo AA. Antimicrobial Activity and Phytochemical Characterization of Baccharis concava Pers., a Native Plant of the Central Chilean Coast. Molecules 2024; 29:1654. [PMID: 38611933 PMCID: PMC11013932 DOI: 10.3390/molecules29071654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Few sclerophyllous plants from the central coast of Chile have been systematically studied. This work describes the phytochemical composition and antimicrobial properties of Baccharis concava Pers. (sin. B. macraei), a shrub found in the first line and near the Pacific coast. B. concava has been traditionally used by indigenous inhabitants of today's central Chile for its medicinal properties. Few reports exist regarding the phytochemistry characterization and biological activities of B. concava. A hydroalcoholic extract of B. concava was prepared from leaves and small branches. Qualitative phytochemical characterization indicated the presence of alkaloids, steroids, terpenoids, flavonoids, phenolic, and tannin compounds. The antimicrobial activity of this extract was assessed in a panel of microorganisms including Gram-positive bacteria, Gram-negative bacteria, and pathogenic yeasts. The extract displayed an important antimicrobial effect against Gram-positive bacteria, Candida albicans, and Cryptococcus neoformans but not against Gram-negatives, for which an intact Lipopolysaccharide is apparently the determinant of resistance to B. concava extracts. The hydroalcoholic extract was then fractionated through a Sephadex LH-20/methanol-ethyl acetate column. Afterward, the fractions were pooled according to a similar pattern visualized by TLC/UV analysis. Fractions obtained by this criterion were assessed for their antimicrobial activity against Staphylococcus aureus. The fraction presenting the most antimicrobial activity was HPLC-ESI-MS/MS, obtaining molecules related to caffeoylquinic acid, dicaffeoylquinic acid, and quercetin, among others. In conclusion, the extracts of B. concava showed strong antimicrobial activity, probably due to the presence of metabolites derived from phenolic acids, such as caffeoylquinic acid, and flavonoids, such as quercetin, which in turn could be responsible for helping with wound healing. In addition, the development of antimicrobial therapies based on the molecules found in B. concava could help to combat infection caused by pathogenic yeasts and Gram-positive bacteria, without affecting the Gram-negative microbiota.
Collapse
Affiliation(s)
- Maité Rodríguez-Díaz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| | - Fabián E. Pérez
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| | - Paloma M. Manosalva
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| | - Juan I. Cerda
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| | - Consuelo F. Martínez-Contreras
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| | - Aracely Y. Mora
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomas, Santiago 8370003, Chile;
| | - Sergio A. Bucarey
- Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Andrés Barriga
- Centro de Estudios Para el Desarrollo de la Química (CEPEDEQ), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile;
| | - Jorge Escobar
- Laboratorio de Química Biológica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - José L. Martínez
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Estación Central, Santiago 9160000, Chile
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370134, Chile; (M.R.-D.); (F.E.P.); (P.M.M.); (J.I.C.); (C.F.M.-C.)
| |
Collapse
|
2
|
Kučuk N, Primožič M, Kotnik P, Knez Ž, Leitgeb M. Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods 2024; 13:553. [PMID: 38397530 PMCID: PMC10888073 DOI: 10.3390/foods13040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Plant waste materials are important sources of bioactive compounds with remarkable health-promoting benefits. In particular, industrial by-products such as mango peels are sustainable sources of bioactive substances, with antioxidant, enzymatic, and antimicrobial activity. Appropriate processing is essential to obtain highly bioactive compounds for further use in generating value-added products for the food industry. The objective of the study was to investigate and compare the biological activity of compounds from fresh and dried mango peels obtained by different conventional methods and unconventional extraction methods using supercritical fluids (SFE). The highest total phenolic content (25.0 mg GAE/g DW) and the total content of eight phenolic compounds (829.92 µg/g DW) determined by LC-MS/MS were detected in dried mango peel extract obtained by the Soxhlet process (SE). SFE gave the highest content of proanthocyanidins (0.4 mg PAC/g DW). The ethanolic ultrasonic process (UAE) provided the highest antioxidant activity of the product (82.4%) using DPPH radical scavenging activity and total protein content (2.95 mg protein/g DW). Overall, the dried mango peels were richer in bioactive compounds (caffeic acid, chlorogenic acid, gallic acid, catechin, and hesperidin/neohesperidin), indicating successful preservation during air drying. Furthermore, outstanding polyphenol oxidase, superoxide dismutase (SOD), and lipase activities were detected in mango peel extracts. This is the first study in which remarkable antibacterial activities against the growth of Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) were evaluated by determining the microbial growth inhibition rate after 12 and 24 h incubation periods for mango peel extracts obtained by different methods. Ethanolic SE and UAE extracts from dried mango peels resulted in the lowest minimum inhibitory concentrations (MIC90) for all bacterial species tested. Mango peels are remarkable waste products that could contribute to the sustainable development of exceptional products with high-added value for various applications, especially as dietary supplements.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
| | - Petra Kotnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (N.K.); (M.P.); (P.K.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
3
|
Stavinskaya O, Laguta I, Kuzema P, Skorochod I, Roy A, Kurdish I. Preparation of Composites Based on Caffeic Acid and Fumed Silica and Evaluation of Their Antioxidant and Antimicrobial Properties. CHEMISTRY JOURNAL OF MOLDOVA 2022. [DOI: 10.19261/cjm.2022.984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The work was aimed at preparing the CA+A300 composite consisting of caffeic acid (CA) and fumed silica (A300) and at comparing the properties of CA in the solution and in the composite. The results showed that the solution and the composite are effective antioxidant/antimicrobial agents and that inclusion of CA in the CA+A300 composite provides its gradual release into solutions and reaction mixtures, thus ensuring a prolonged action of the compound.
Collapse
Affiliation(s)
- Oksana Stavinskaya
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov str., Kyiv 03164, Ukraine
| | - Iryna Laguta
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov str., Kyiv 03164, Ukraine
| | - Pavlo Kuzema
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov str., Kyiv 03164, Ukraine
| | - Iryna Skorochod
- D.K. Zabolotny Institute of Microbiоlogy and Virology of National Academy of Sciences of Ukraine, 154, Zabolotny str., Kyiv 03143, Ukraine
| | - Alla Roy
- D.K. Zabolotny Institute of Microbiоlogy and Virology of National Academy of Sciences of Ukraine, 154, Zabolotny str., Kyiv 03143, Ukraine
| | - Ivan Kurdish
- D.K. Zabolotny Institute of Microbiоlogy and Virology of National Academy of Sciences of Ukraine, 154, Zabolotny str., Kyiv 03143, Ukraine
| |
Collapse
|
4
|
Diemer E, Chadni M, Grimi N, Ioannou I. Optimization of the Accelerated Solvent Extraction of Caffeoylquinic Acids from Forced Chicory Roots and Antioxidant Activity of the Resulting Extracts. Foods 2022. [PMCID: PMC9601592 DOI: 10.3390/foods11203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Forced chicory roots (FCR) are the main but also the least valued by-products of Belgian endive culture. However, they contain molecules of interest for industry such as caffeoylquinic acids (CQAs). This study aims to investigate accelerated solvent extraction (ASE) as a green technique to recover chlorogenic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-diCQA), the main CQAs. A D-optimal design was used to determine the influence of temperature and ethanol percentage on their extraction. Optimal extraction conditions were determined using response surface methodology (RSM) and allow the recovery of 4.95 ± 0.48 mg/gDM of 5-CQA at 107 °C, 46% of ethanol and 5.41 ± 0.79 mg/gDM of 3,5-diCQA at 95 °C, 57% of ethanol. The antioxidant activity of the extracts was also optimized by RSM. The highest antioxidant activity was achieved at 115 °C with 40% ethanol (more than 22mgTrolox/gDM). Finally, correlation between the antioxidant activity and the amount of CQAs was determined. FCR can be a great source of bioactive compounds with potential use as biobased antioxidant.
Collapse
Affiliation(s)
- Etienne Diemer
- URD Agro-Biotechnologie Industrielles (ABI), Centre Européen de Biotechnologie et Bioéconomie (CEBB), AgroParisTech, CEDEX, 51110 Pomacle, France
- Transformations Intégrées de la Matière Renouvelable (TIMR), Centre de Recherche Royallieu—CS 60319, ESCOM, Université de Technologie de Compiègne, CEDEX, 60203 Compiègne, France
| | - Morad Chadni
- URD Agro-Biotechnologie Industrielles (ABI), Centre Européen de Biotechnologie et Bioéconomie (CEBB), AgroParisTech, CEDEX, 51110 Pomacle, France
| | - Nabil Grimi
- Transformations Intégrées de la Matière Renouvelable (TIMR), Centre de Recherche Royallieu—CS 60319, ESCOM, Université de Technologie de Compiègne, CEDEX, 60203 Compiègne, France
| | - Irina Ioannou
- URD Agro-Biotechnologie Industrielles (ABI), Centre Européen de Biotechnologie et Bioéconomie (CEBB), AgroParisTech, CEDEX, 51110 Pomacle, France
- Correspondence: ; Tel.: +33-(0)3-5262-0468
| |
Collapse
|
5
|
Liu Q, Yan Y, Wu Y, Zhang X, Zhou X. Systematic thermodynamic study of clorsulon dissolved in ten organic solvents: Mechanism evaluation by modeling and molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Dong X, Cao Y, Wang N, Wang P, Li M. Systematic study on solubility of chrysin in different organic solvents: The synergistic effect of multiple intermolecular interactions on the dissolution process. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Ravandeh M, Thal D, Kahlert H, Wende K, Lalk M. Self-assembled mono- and bilayers on gold electrodes to assess antioxidants—a comparative study. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04737-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Oxidative stress is considered as an imbalance of reactive species over antioxidants, leading to diseases and cell death. Various methods have been developed to determine the antioxidant potential of natural or synthetic compounds based on the ability to scavenge free radicals. However, most of them lack biological relevance. Here, a gold-based self-assembled monolayer (SAM) was compared with a gold-supported lipid bilayer as models for the mammalian cell membrane to evaluate the free radical scavenging activity of different antioxidants. The oxidative damage induced by reactive species was verified by cyclic and differential pulse voltammetry and measured by the increase of electrochemical peak current of a redox probe. Trolox, caffeic acid (CA), epigallocatechin gallate (EGCG), ascorbic acid (AA), and ferulic acid (FA) were used as model antioxidants. The change in the decrease of the electrochemical signal reflecting oxidative membrane damage confirms the expected protective role. Both model systems showed similar efficacies of each antioxidant, the achieved order of radical scavenging potential is as follows: Trolox > CA > EGCG > AA > FA. The results showed that the electrochemical assay with SAM-modified electrodes is a stable and powerful tool to estimate qualitatively the antioxidative activity of a compound with respect to cell membrane protection against biologically relevant reactive species.
Collapse
|
8
|
Apelblat A, Vraneš M, Gadžurić S, Bešter-Rogač M. Conductivity study with caffeinate anion - Caffeic acid and its sodium and potassium salts. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Orlando G, Ferrante C, Zengin G, Sinan KI, Bene K, Diuzheva A, Jekő J, Cziáky Z, Simone SD, Recinella L, Chiavaroli A, Leone S, Brunetti L, Picot-Allain CMN, Mahomoodally MF, Menghini L. Qualitative Chemical Characterization and Multidirectional Biological Investigation of Leaves and Bark Extracts of Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae). Antioxidants (Basel) 2019; 8:antiox8090343. [PMID: 31480498 PMCID: PMC6770311 DOI: 10.3390/antiox8090343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae) has a long history of use by folk populations for the management of multiple human ailments. Based on the published literature, there has been no attempt to conduct a comparative assessment of the biological activity and the phytochemical profiles of the leaves and stem bark of A. leiocarpus extracted using methanol, ethyl acetate, and water. By high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn) analysis, quinic, shikimic, gallic, and protocatechuic acids were tentatively identified from all the extracts, while chlorogenic, caffeic, ferulic, and dodecanedioic acids were only characterised from the leaves extracts. Additionally, a pharmacological study was carried out to evaluate potential protective effects that are induced by the extracts in rat colon and colon cancer HCT116 cell line. In general, the methanol and water extracts of A. leiocarpus leaves and stem bark showed potent radical scavenging and reducing properties. It was noted that the stem bark extracts were more potent antioxidants as compared to the leaves extracts. The methanol extract of A. leiocarpus leaves showed the highest acetyl (4.68 mg galantamine equivalent/g) and butyryl (4.0 mg galantamine equivalent/g) cholinesterase inhibition. Among ethyl acetate extracts, the pharmacological investigation suggested stem bark ethyl acetate extracts to be the most promising. This extract revealed ability to protect rat colon from lipopolysaccharide-induced oxidative stress, without exerting promoting effects on HCT116 cell line viability and migration. As a conclusion, A. leiocarpus represents a potential source of bioactive compounds in the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya 42130, Turkey.
| | | | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Ivory Coast
| | - Alina Diuzheva
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague 16500, Czech Republic
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza 4400, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza 4400, Hungary
| | - Simonetta Di Simone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | - Luigi Menghini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
10
|
Uncovering the solubility behavior of vitamin B6 hydrochloride in three aqueous binary solvents by thermodynamic analysis and molecular dynamic simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, Ficai D, Ficai A, Andronescu E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E230. [PMID: 31151305 PMCID: PMC6631192 DOI: 10.3390/medicina55060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Collapse
Affiliation(s)
- Alexa Croitoru
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ovidiu Oprea
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Adrian Nicoara
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Roxana Trusca
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Mihai Radu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ionela Neacsu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Denisa Ficai
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
12
|
Ospina M, Montaña-Oviedo K, Díaz-Duque Á, Toloza-Daza H, Narváez-Cuenca CE. Utilization of fruit pomace, overripe fruit, and bush pruning residues from Andes berry (Rubus glaucus Benth) as antioxidants in an oil in water emulsion. Food Chem 2019; 281:114-123. [DOI: 10.1016/j.foodchem.2018.12.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
|
13
|
Solubility of caffeic acid in CO2 + ethanol: Experimental and predicted data using Cubic Plus Association Equation of State. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Dong X, Cao Y, Lin H, Yao Y, Guo Y, Wang T, Wu S, Wu Z. Solubilities of formononetin and daidzein in organic solvents: Effect of molecular structure and interaction on solvation process. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|