1
|
Shrivastav G, Borkotoky S, Dey D, Singh B, Malhotra N, Azad K, Jayaram B, Agarwal M, Banerjee M. Structure and energetics guide dynamic behaviour in a T = 3 icosahedral virus capsid. Biophys Chem 2024; 305:107152. [PMID: 38113782 DOI: 10.1016/j.bpc.2023.107152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the β and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhomoi Borkotoky
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Malhotra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Smith ER, Theodorakis PE. Multiscale simulation of fluids: coupling molecular and continuum. Phys Chem Chem Phys 2024; 26:724-744. [PMID: 38113114 DOI: 10.1039/d3cp03579d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Computer simulation is an important tool for scientific progress, especially when lab experiments are either extremely costly and difficult or lack the required resolution. However, all of the simulation methods come with limitations. In molecular dynamics (MD) simulation, the length and time scales that can be captured are limited, while computational fluid dynamics (CFD) methods are built on a range of assumptions, from the continuum hypothesis itself, to a variety of closure assumptions. To address these issues, the coupling of different methodologies provides a way to retain the best of both methods. Here, we provide a perspective on multiscale simulation based on the coupling of MD and CFD with each a distinct part of the same simulation domain. This style of coupling allows molecular detail to be present only where it is needed, so CFD can model larger scales than possible with MD alone. We present a unified perspective of the literature, showing the links between the two main types of coupling, state and flux, and discuss the varying assumptions in their use. A unique challenge in such coupled simulation is obtaining averages and constraining local parts of a molecular simulation. We highlight that incorrect localisation has resulted in an error in the literature. We then finish with some applications, focused on the simulation of fluids. Thus, we hope to motivate further research in this exciting area with applications across the spectrum of scientific disciplines.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| | | |
Collapse
|
3
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Lipska AG, Sieradzan AK, Czaplewski C, Lipińska AD, Ocetkiewicz KM, Proficz J, Czarnul P, Krawczyk H, Liwo A. Long-time scale simulations of virus-like particles from three human-norovirus strains. J Comput Chem 2023; 44:1470-1483. [PMID: 36799410 DOI: 10.1002/jcc.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/29/2023] [Indexed: 02/18/2023]
Abstract
The dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that sits in the VLP shell) and the P2 subdomain (that protrudes outside) of the major VP1 protein, this resulting in a correlated wagging motion of the P2 subdomains with respect to the VLP surface. The fluctuations of the P2 subdomain were found to be more pronounced and the P2 domain made a greater angle with the normal to the VLP surface for the GII.2 strain, which could explain the inability of this strain to bind the histo-blood group antigens (HBGAs).
Collapse
Affiliation(s)
- Agnieszka G Lipska
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam K Sieradzan
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Andrea D Lipińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Krzysztof M Ocetkiewicz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Jerzy Proficz
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Paweł Czarnul
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Henryk Krawczyk
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Centre of Informatics Tri-city Academic Supercomputer and Network (CI TASK), Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland.,Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities. ACS CENTRAL SCIENCE 2022; 8:1646-1663. [PMID: 36589893 PMCID: PMC9801513 DOI: 10.1021/acscentsci.2c00981] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from convalescent human donor, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Christian Seitz
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| | - Julia Lederhofer
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Yaroslav Tsybovsky
- Electron
Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research
Sponsored by the National Cancer Institute, Frederick, Maryland21702, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology and the Skaggs
Institute for Chemical Biology, The Scripps
Research Institute, La Jolla, California92037, United States
| | - Masaru Kanekiyo
- Vaccine
Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
6
|
Unravelling viral dynamics through molecular dynamics simulations - A brief overview. Biophys Chem 2022; 291:106908. [DOI: 10.1016/j.bpc.2022.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022]
|
7
|
Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502576. [PMID: 35982676 PMCID: PMC9387122 DOI: 10.1101/2022.08.02.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza virus has resurfaced recently from inactivity during the early stages of the COVID-19 pandemic, raising serious concerns about the nature and magnitude of future epidemics. The main antigenic targets of influenza virus are two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Whereas the structural and dynamical properties of both glycoproteins have been studied previously, the understanding of their plasticity in the whole-virion context is fragmented. Here, we investigate the dynamics of influenza glycoproteins in a crowded protein environment through mesoscale all-atom molecular dynamics simulations of two evolutionary-linked glycosylated influenza A whole-virion models. Our simulations reveal and kinetically characterize three main molecular motions of influenza glycoproteins: NA head tilting, HA ectodomain tilting, and HA head breathing. The flexibility of HA and NA highlights antigenically relevant conformational states, as well as facilitates the characterization of a novel monoclonal antibody, derived from human convalescent plasma, that binds to the underside of the NA head. Our work provides previously unappreciated views on the dynamics of HA and NA, advancing the understanding of their interplay and suggesting possible strategies for the design of future vaccines and antivirals against influenza.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, United States
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Liu X, Korotkin I, Rao Z, Karabasov S. A Thermostat‐Consistent Fully Coupled Molecular Dynamics–Generalized Fluctuating Hydrodynamics Model for Non‐Equilibrium Flows. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinjian Liu
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou 221116 China
- The School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| | - Ivan Korotkin
- Mathematical Sciences University of Southampton University Rd. Southampton SO17 1BJ UK
| | - Zhonghao Rao
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou 221116 China
| | - Sergey Karabasov
- The School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
9
|
Tarasova E, Okimoto N, Feng S, Nerukh D, Khayat R, Taiji M. Constant pH molecular dynamics of porcine circovirus 2 capsid protein reveals a mechanism for capsid assembly. Phys Chem Chem Phys 2021; 23:24617-24626. [PMID: 34726674 PMCID: PMC8705882 DOI: 10.1039/d1cp02874j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spatiotemporal regulation of viral capsid assembly ensures the selection of the viral genome for encapsidation. The porcine circovirus 2 is the smallest autonomously replicating pathogenic virus, yet how PCV2 capsid assembly is regulated to occur within the nucleus remains unknown. We report that pure PCV2 capsid proteins, in the absence of nucleic acids, require acidic conditions to assemble into empty capsids in vitro. By employing constant pH replica exchange molecular dynamics, we unveil the atomistic mechanism of pH-dependency for capsid assembly. The results show that an appropriate protonation configuration for a cluster of acidic amino acids is necessary to appropriately position the GH-loop for driving the capsid assembly. We demonstrate that assembly is prohibited at neutral pH because deprotonation of these residues results in their electrostatic repulsion, shifting the GH-loop to a position incompatible with capsid assembly. We propose that encapsulation of nucleic acids overcomes this repulsion to suitably position the GH-loop. Our findings provide the first atomic resolution mechanism of capsid assembly regulation. These findings are useful for the development of therapeutics that inhibit PCV2 self-assembly.
Collapse
Affiliation(s)
- Elvira Tarasova
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Noriaki Okimoto
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Shanshan Feng
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Dmitry Nerukh
- Department of Mathematics, Aston University, Birmingham, UK
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.
| | - Makoto Taiji
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
- Drug Discovery Molecular Simulation Platform Unit, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
10
|
Fujimoto K, Yamaguchi Y, Urano R, Shinoda W, Ishikawa T, Omagari K, Tanaka Y, Nakagawa A, Okazaki S. All-atom molecular dynamics study of hepatitis B virus containing pregenome RNA in solution. J Chem Phys 2021; 155:145101. [PMID: 34654297 DOI: 10.1063/5.0065765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Immature hepatitis B virus (HBV) captures nucleotides in its capsid for reverse transcription. The nucleotides and nucleotide analog drugs, which are triphosphorylated and negatively charged in the cell, approach the capsid via diffusion and are absorbed into it. In this study, we performed a long-time molecular dynamics calculation of the entire HBV capsid containing pregenome RNA to investigate the interactions between the capsid and negatively charged substances. Electric field analysis demonstrated that negatively charged substances can approach the HBV capsid by thermal motion, avoiding spikes. The substances then migrate all over the floor of the HBV capsid. Finally, they find pores through which they can pass through the HBV capsid shell. Free energy profiles were calculated along these pores for small ions to understand their permeability through the pores. Anions (Cl-) showed higher free energy barriers than cations (Na+ and K+) through all pores, and the permeation rate of Cl- was eight times slower than that of K+ or Na+. Furthermore, the ions were more stable in the capsid than in the bulk water. Thus, the HBV capsid exerts ion selectivity for uptake and provides an environment for ions, such as nucleotides and nucleotide analog drugs, to be stabilized within the capsid.
Collapse
Affiliation(s)
- Kazushi Fujimoto
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Youhei Yamaguchi
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Ryo Urano
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Tetsuya Ishikawa
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | | | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Nagoya, Japan
| | | | - Susumu Okazaki
- Department of Advanced Materials Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Ye. M. Makogonenko RYM, Hrabovskyi OO, Bereznytskyj GK, Pyrogova LV, Gogolinskaya GK, Makogonenko YM. Chlorine-binding structures: role and organization in different proteins. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The review focuses on chloride-binding structures in the proteins of bacteria, plants, viruses and animals. The structure and amino acid composition of the chloride-binding site and its role in the functioning of structural, regulatory, transport, receptor, channel proteins, transcription factors and enzymes are considered. Data on the important role of chloride-binding structures and chloride anions in the polymerization of fibrin are presented.
Collapse
|
12
|
Li F, Korotkin I, Farafonov V, Karabasov SA. Lateral migration of peptides in transversely sheared flows in water: An atomistic-scale-resolving simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
14
|
Liu X, Korotkin I, Rao Z, Karabasov S. A Thermostat‐Consistent Fully Coupled Molecular Dynamics—Generalized Fluctuating Hydrodynamics Model. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinjian Liu
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou 221116 China
- The School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| | - Ivan Korotkin
- Mathematical Sciences University of Southampton University Rd. Southampton SO17 1BJ UK
| | - Zhonghao Rao
- School of Electrical and Power Engineering China University of Mining and Technology Xuzhou 221116 China
| | - Sergey Karabasov
- The School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS UK
| |
Collapse
|
15
|
Liu X, Wang T, He M. Investigation on the condensation process of HFO refrigerants by molecular dynamics simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Farafonov VS, Nerukh D. MS2 bacteriophage capsid studied using all-atom molecular dynamics. Interface Focus 2019; 9:20180081. [PMID: 31065345 DOI: 10.1098/rsfs.2018.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 11/12/2022] Open
Abstract
The all-atom model of an MS2 bacteriophage particle without its genome (the capsid) was built using high-resolution cryo-electron microscopy (EM) measurements for initial conformation. The structural characteristics of the capsid and the dynamics of the surrounding solution were examined using molecular dynamics simulation. The model demonstrates the overall preservation of the cryo-EM structure of the capsid at physiological conditions (room temperature and ions composition). The formation of a dense anion layer near the inner surface and a diffuse cation layer near the outer surface of the capsid was detected. The flow of water molecules and ions across the capsid through its pores were quantified, which was considerable for water and substantial for ions.
Collapse
Affiliation(s)
- Vladimir S Farafonov
- Department of Physical Chemistry, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Dmitry Nerukh
- Department of Mathematics, Systems Analytics Research Institute, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
17
|
Hu J, Korotkin I, Karabasov S. Hybrid multiscale simulation reveals focusing of a diffusing peptide molecule by parallel shear flow in water. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Korotkin IA, Karabasov SA. A generalised Landau-Lifshitz fluctuating hydrodynamics model for concurrent simulations of liquids at atomistic and continuum resolution. J Chem Phys 2018; 149:244101. [PMID: 30599699 DOI: 10.1063/1.5058804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new hybrid molecular dynamics-hydrodynamics method based on the analogy with two-phase flows is implemented that takes into account the feedback of molecular dynamics on hydrodynamics consistently. The consistency is achieved by deriving a discrete system of fluctuating hydrodynamic equations whose solution converges to the locally averaged molecular dynamics field exactly in terms of the locally averaged fields. The new equations can be viewed as a generalisation of the classical continuum Landau-Lifshitz fluctuating hydrodynamics model in statistical mechanics to include a smooth transition from large-scale continuum hydrodynamics that obeys a Gaussian statistics to all-atom molecular dynamics. Similar to the classical Landau-Lifshitz fluctuating hydrodynamics model, the suggested generalised Landau-Lifshitz fluctuating hydrodynamics equations are too complex for analytical solution; hence, a computational scheme for solving these equations is suggested. The scheme is implemented in a popular open-source molecular dynamics code GROMACS (GROningen MAchine for Chemical Simulations), and numerical examples are provided for liquid argon simulations under equilibrium conditions and under macroscopic flow effects.
Collapse
Affiliation(s)
- I A Korotkin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - S A Karabasov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
19
|
Abstract
Classical molecular dynamics modeling of whole viruses or their capsids in explicit water is discussed, and known examples from the literature are analyzed. Only works on all-atom modeling in explicit water are included. Physical chemistry of the whole system is the focus, which includes the structure and dynamics of the biomolecules as well as water and ion behavior in and around the virus particle. It was demonstrated that in most investigations molecular phenomena that currently can not be studied experimentally are successfully reproduced and explained by the simulations. These include, for example, transport and distribution of ions inside viruses that ultimately connected to their stability, the hydrodynamic pressure in the capsid related to viruses' elastic properties, the role of metal ions in virus swelling, and others. Current and future tendencies in the development of all-atom virus simulations are outlined.
Collapse
Affiliation(s)
- Elvira Tarasova
- Department of Mathematics , Aston University , Birmingham B4 7ET , U.K
- Laboratory for Computational Molecular Design , RIKEN Center for Biosystems Dynamics (BDR) , Building B, 6-2-4 Furuedai , Suita , Osaka 565-0874 , Japan
- Immanuel Kant Baltic Federal University , A. Nevskogo str. 14 , Kaliningrad 236041 , Russian Federation
| | - Dmitry Nerukh
- Department of Mathematics , Aston University , Birmingham B4 7ET , U.K
| |
Collapse
|
20
|
Tarasova E, Farafonov V, Taiji M, Nerukh D. Details of charge distribution in stable viral capsid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Hu J, Korotkin IA, Karabasov SA. A multi-resolution particle/fluctuating hydrodynamics model for hybrid simulations of liquids based on the two-phase flow analogy. J Chem Phys 2018; 149:084108. [PMID: 30193466 DOI: 10.1063/1.5040962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A triple-scale model of a molecular liquid, where atomistic, coarse-grained, and hydrodynamic descriptions of the same substance are consistently combined, is developed. Following the two-phase analogy method, the continuum and discrete particle representations of the same substance are coupled together in the framework of conservation laws for mass and momentum that are treated as effective phases of a nominally two-phase flow. The effective phase distribution, which governs the model resolution locally, is a user-defined function. In comparison with the previous models of this kind in the literature which used the classical Molecular Dynamics (MD) for the particulate phase, the current approach uses the Adaptive Resolution Scheme (AdResS) and stochastic integration to smoothen the particle transition from non-bonded atom dynamics to hydrodynamics. Accuracy and robustness of the new AdResS-Fluctuating Hydrodynamics (FH) model for water at equilibrium conditions is compared with the previous implementation of the two-phase analogy model based on the MD-FH method. To demonstrate that the AdResS-FH method can accurately support hydrodynamic fluctuations of mass and momentum, a test problem of high-frequency acoustic wave propagation through a small hybrid computational domain region is considered.
Collapse
Affiliation(s)
- J Hu
- The School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| | - I A Korotkin
- The School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| | - S A Karabasov
- The School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| |
Collapse
|
22
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
23
|
Hadden JA, Perilla JR, Schlicksup CJ, Venkatakrishnan B, Zlotnick A, Schulten K. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 2018; 7:32478. [PMID: 29708495 PMCID: PMC5927769 DOI: 10.7554/elife.32478] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The hepatitis B virus capsid represents a promising therapeutic target. Experiments suggest the capsid must be flexible to function; however, capsid structure and dynamics have not been thoroughly characterized in the absence of icosahedral symmetry constraints. Here, all-atom molecular dynamics simulations are leveraged to investigate the capsid without symmetry bias, enabling study of capsid flexibility and its implications for biological function and cryo-EM resolution limits. Simulation results confirm flexibility and reveal a propensity for asymmetric distortion. The capsid’s influence on ionic species suggests a mechanism for modulating the display of cellular signals and implicates the capsid’s triangular pores as the location of signal exposure. A theoretical image reconstruction performed using simulated conformations indicates how capsid flexibility may limit the resolution of cryo-EM. Overall, the present work provides functional insight beyond what is accessible to experimental methods and raises important considerations regarding asymmetry in structural studies of icosahedral virus capsids.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, United States
| | | | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|