1
|
Udensi J, Loughman J, Loskutova E, Byrne HJ. Raman Spectroscopy of Carotenoid Compounds for Clinical Applications-A Review. Molecules 2022; 27:9017. [PMID: 36558154 PMCID: PMC9784873 DOI: 10.3390/molecules27249017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Carotenoid compounds are ubiquitous in nature, providing the characteristic colouring of many algae, bacteria, fruits and vegetables. They are a critical component of the human diet and play a key role in human nutrition, health and disease. Therefore, the clinical importance of qualitative and quantitative carotene content analysis is increasingly recognised. In this review, the structural and optical properties of carotenoid compounds are reviewed, differentiating between those of carotenes and xanthophylls. The strong non-resonant and resonant Raman spectroscopic signatures of carotenoids are described, and advances in the use of Raman spectroscopy to identify carotenoids in biological environments are reviewed. Focus is drawn to applications in nutritional analysis, optometry and serology, based on in vitro and ex vivo measurements in skin, retina and blood, and progress towards establishing the technique in a clinical environment, as well as challenges and future perspectives, are explored.
Collapse
Affiliation(s)
- Joy Udensi
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - James Loughman
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Ekaterina Loskutova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| |
Collapse
|
2
|
Zhao H, Xu X, Wang S, Li S, Sun C, Men Z. Modulated excited state geometry and Electron-Phonon coupling of lutein by temperature and solvent polarizability. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121520. [PMID: 35728401 DOI: 10.1016/j.saa.2022.121520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Resonance Raman spectroscopy is one of the spectroscopic methods often chosen for studying linear polyene molecules because the Raman intensities of their υ1 (C = C) and υ2 (C-C) stretching vibrations are sensitive to electron-phonon coupling and the π-electron energy gap. Here, the resonance Raman and absorption spectra of lutein were studied as a function of solvent polarizabilities and of temperature in the CS2 solvent. For lutein in CS2, as the temperature decreased and CS solidified, the Raman scattering cross-section (RSCS) and the electron-phonon coupling constant had opposite dependence trends on temperature. The wavenumber of the lutein 0-0 electronic transition showed a marked shift to lower wavenumbers when the polarizability of the solvents decreased, and the Huang-Rhys (HR) factors and electron-phonon coupling also decreased. This work helps explore the influence of the external environment (e.g., temperature and solvent) on the excited state geometry of linear polyene molecules.
Collapse
Affiliation(s)
- Haiying Zhao
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Xin Xu
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Shenghan Wang
- College of Physics, Jilin University, Changchun 130012, China
| | - Shuo Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Chenglin Sun
- College of Physics, Jilin University, Changchun 130012, China.
| | - Zhiwei Men
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Marabotti P, Tommasini M, Castiglioni C, Serafini P, Peggiani S, Tortora M, Rossi B, Li Bassi A, Russo V, Casari CS. Electron-phonon coupling and vibrational properties of size-selected linear carbon chains by resonance Raman scattering. Nat Commun 2022; 13:5052. [PMID: 36030293 PMCID: PMC9420137 DOI: 10.1038/s41467-022-32801-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
UV resonance Raman spectroscopy of size-selected linear sp-carbon chains unveils vibrational overtones and combinations up to the fifth order. Thanks to the tunability of the synchrotron source, we excited each H-terminated polyyne (HCnH with n = 8,10,12) to the maxima of its vibronic absorption spectrum allowing us to precisely determine the electronic and vibrational structure of the ground and excited states for the main observed vibrational mode. Selected transitions are shown to enhance specific overtone orders in the Raman spectrum in a specific way that can be explained by a simple analytical model based on Albrecht's theory of resonance Raman scattering. The determined Huang-Rhys factors indicate a strong and size-dependent electron-phonon coupling increasing with the sp-carbon chain length.
Collapse
Affiliation(s)
- P Marabotti
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy
| | - M Tommasini
- Department of Chemistry, Materials and Chem. Eng. 'G. Natta', Politecnico di Milano Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - C Castiglioni
- Department of Chemistry, Materials and Chem. Eng. 'G. Natta', Politecnico di Milano Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
| | - P Serafini
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy
| | - S Peggiani
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy
| | - M Tortora
- Elettra Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149, Trieste, Italy
| | - B Rossi
- Elettra Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149, Trieste, Italy
| | - A Li Bassi
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy
| | - V Russo
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy
| | - C S Casari
- Micro and Nanostructured Materials Laboratory-NanoLab, Department of Energy, Politecnico di Milano via Ponzio 34/3, I-20133, Milano, Italy.
| |
Collapse
|
4
|
Udensi J, Loskutova E, Loughman J, Byrne HJ. Quantitative Raman Analysis of Carotenoid Protein Complexes in Aqueous Solution. Molecules 2022; 27:molecules27154724. [PMID: 35897900 PMCID: PMC9329867 DOI: 10.3390/molecules27154724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Carotenoids are naturally abundant, fat-soluble pigmented compounds with dietary, antioxidant and vision protection advantages. The dietary carotenoids, Beta Carotene, Lutein, and Zeaxanthin, complexed with in bovine serum albumin (BSA) in aqueous solution, were explored using Raman spectroscopy to differentiate and quantify their spectral signatures. UV visible absorption spectroscopy was employed to confirm the linearity of responses over the concentration range employed (0.05–1 mg/mL) and, of the 4 Raman source wavelengths (785 nm, 660 nm, 532 nm, 473 nm), 532 nm was chosen to provide the optimal response. After preprocessing to remove water and BSA contributions, and correct for self-absorption, a partial least squares model with R2 of 0.9995, resulted in an accuracy of the Root Mean Squared Error of Prediction for Beta Carotene of 0.0032 mg/mL and Limit of Detection 0.0106 mg/mL. Principal Components Analysis clearly differentiated solutions of the three carotenoids, based primarily on small shifts of the main peak at ~1520 cm−1. Least squares fitting analysis of the spectra of admixtures of the carotenoid:protein complexes showed reasonable correlation between norminal% and fitted%, yielding 100% contribution when fitted with individual carotenoid complexes and variable contributions with multiple ratios of admixtures. The results indicate the technique can potentially be used to quantify the carotenoid content of human serum and to identify their differential contributions for application in clinical analysis.
Collapse
Affiliation(s)
- Joy Udensi
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland; (E.L.); (J.L.)
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
- Correspondence:
| | - Ekaterina Loskutova
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland; (E.L.); (J.L.)
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - James Loughman
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland; (E.L.); (J.L.)
- Centre for Eye Research, Ireland, Technological University Dublin, City Campus, Grangegorman, Dublin 7, D07 EWV4 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
| |
Collapse
|
5
|
Solvent polarizability modulated the electronic state of conjugated long-chain polyene molecules by DFT. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Jakučionis M, Gaižiu Nas I, Šulskus J, Abramavičius D. Simulation of Ab Initio Optical Absorption Spectrum of β-Carotene with Fully Resolved S0 and S2 Vibrational Normal Modes. J Phys Chem A 2022; 126:180-189. [PMID: 34985272 DOI: 10.1021/acs.jpca.1c06115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic absorption spectrum of β-carotene (β-Car) is studied using quantum chemistry and quantum dynamics simulations. Vibrational normal modes were computed in optimized geometries of the electronic ground state S0 and the optically bright excited S2 state using the time-dependent density functional theory. By expressing the S2-state normal modes in terms of the ground-state modes, we find that no one-to-one correspondence between the ground- and excited-state vibrational modes exists. Using the ab initio results, we simulated the β-Car absorption spectrum with all 282 vibrational modes in a model solvent at 300 K using the time-dependent Dirac-Frenkel variational principle and are able to qualitatively reproduce the full absorption line shape. By comparing the 282-mode model with the prominent 2-mode model, widely used to interpret carotenoid experiments, we find that the full 282-mode model better describes the high-frequency progression of carotenoid absorption spectra; hence, vibrational modes become highly mixed during the S0 → S2 optical excitation. The obtained results suggest that electronic energy dissipation is mediated by numerous vibrational modes.
Collapse
Affiliation(s)
- Mantas Jakučionis
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Ignas Gaižiu Nas
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Juozas Šulskus
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| | - Darius Abramavičius
- Institute of Chemical Physics, Vilnius University, Sauletekio Avenue 9-III, LT-10222 Vilnius, Lithuania
| |
Collapse
|
7
|
Gong N, Yao F, Wang J, Fang W, Sun C, Men Z. Excited state geometry of β-carotene influenced by environments: the nature and decisive role of solvent revealing by two-dimensional resonance Raman correlation spectroscopy. OPTICS EXPRESS 2020; 28:33068-33076. [PMID: 33114976 DOI: 10.1364/oe.404647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Resonance Raman scattering can be used to investigate the ground and excited state information of carotenoid. It is known that the Dushinsky rotation can significantly influence the resonant Raman intensity of β-carotene (β-car). The excited state geometry revealed by the double components feature of the C = C stretching vibrational modes and the environmental dependence of the Raman intensity for each component remain unknown. We explore the influence of environmental factors on the relative intensity of these two C = C stretching vibration modes and perform two-dimensional resonance Raman correlation analysis to reveal the changes on β-car excited state geometry. The results show that the relative wavelength difference between the 0-0 absorption and the excitation is the key factor that decides the intensity ratio of the two components and that the intensity of each mode is modulated by environmental factors. This modulation is closely related to the excited state geometry and dynamics, effective conjugation length, and electron-phonon coupling constant. It also shows that the asynchronous cross-peaks in the two-dimensional resonance Raman correlation spectrum (2DRRCOS) can effectively characterize the degree of the varied electron-phonon coupling with the changing conditions. These results are not only complementary to the research on the excited states of carotenoids but also applicable to investigate the environmental dependence of Raman intensity for a lot of π-conjugated molecules.
Collapse
|
8
|
Phase transition induced changes in β-ring rotation and methyl group asymmetric deformation of all-trans-β-carotene. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Yang B, Li Y, Gong N, Cao X, Wang S, Sun C. Study of molecular association in acetic acid-water binary solution by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:463-466. [PMID: 30772663 DOI: 10.1016/j.saa.2018.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Raman spectra of acetic acid-water binary solutions with different concentrations have been measured in order to study molecular association of acetic acid. We find that the symmetric and asymmetric OH stretching vibration of water (3242 and 3443 cm-1) have marked changes of Raman shift when the volume fraction of acetic acid (VAA) is 0.3 and 0.8, respectively, which demonstrates that the hydrogen bonding of the water is affected, causing association molecule (acetic acid-water structure) to undergo two phase transitions. Furthermore, the peak of the HCH bending vibration is blue-shifted at VAA = 0.8, which shows that the acetic acid-acetic acid structure undergoes a phase transition and the acetic acid side-on dimer is formed. These results also indicate that the CH vibration mode in CH⋯O is HCH bending vibration. Finally, the phase transition process of association molecules (hydrated monomer, linear dimer, acetic acid side-on dimer and water-separated dimer) has been obtained in acetic acid-water binary solutions through theoretical analysis.
Collapse
Affiliation(s)
- Bo Yang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Yeqiu Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Nan Gong
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Xianwen Cao
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shenghan Wang
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China; Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Lee J, Song J, Lee D, Pang Y. Metal-enhanced fluorescence and excited state dynamics of carotenoids in thin polymer films. Sci Rep 2019; 9:3551. [PMID: 30837679 PMCID: PMC6401168 DOI: 10.1038/s41598-019-40446-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
Metal-enhanced fluorescence of carotenoids, all-trans-β-carotene and 8'-apo-β-carotene-8'-al dispersed in thin layers of polystyrene and polyethylene glycol were investigated by time-resolved fluorescence spectroscopy. The weak emission signals of carotenoids in polymer films were increased by 4-40 times in the presence of a silver island film and the emission lifetimes of both carotenoids were measured as significantly shortened. The energy transfer from the intermediate states of carotenoids to the silver islands and the subsequent surface plasmon coupled emission were proposed for the mechanisms of metal-enhanced fluorescence. The fluorescence enhancements of carotenoids in the polymer films were also investigated statistically over a wide area of the silver island films.
Collapse
Affiliation(s)
- Jaebeom Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Junghyun Song
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Daedu Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
11
|
Chen C, Gong N, Qu F, Gao Y, Fang W, Sun C, Men Z. Effects of carotenoids on the absorption and fluorescence spectral properties and fluorescence quenching of Chlorophyll a. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:440-445. [PMID: 29966898 DOI: 10.1016/j.saa.2018.06.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Fluorescence and absorption characteristics of Chlorophyll a (Chl-a) were modulated by the carotenoids (Cars) with different numbers of conjugated carbon‑carbon double bonds in solutions. The Chl-a absorption appears the redshift phenomenon with the effective conjugated of Cars increasing. The absorption of Chl-a and Cars are linearly dependent on intrinsic factors, namely effective conjugate length and functional groups, and on environmental factors, such as the polarizability of the solvent. Cars can be able to quench the Chl-a fluorescence by producing the non-emitting exciplex intermediate. The effective conjugated length of Cars is one of the reasons that effect the fluorescence quenching of Chl-a. According to the Stern-Volmer plots, the Chl-a fluorescence quenching should be predominantly dynamic rather than static.
Collapse
Affiliation(s)
- Chen Chen
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, PR China
| | - Nan Gong
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, PR China
| | - Fang Qu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, PR China
| | - Yue Gao
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, PR China
| | - Wenhui Fang
- School of Science, Changchun University of Science and Technology, Changchun 120022, PR China
| | - Chenglin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, PR China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, PR China.
| |
Collapse
|