1
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
2
|
Upadhyay A, Singh R, Talwar P, Verma N, Ahire PD, Khatri H, Masakapalli SK, Pareek N, Kumar V, Kovalev AA, Zhuravleva EA, Litti YV, Vivekanand V. Insights into sustainable resource and energy recovery from leachate towards emission mitigation for environmental management: A critical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118219. [PMID: 37229852 DOI: 10.1016/j.jenvman.2023.118219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The exponential generation of municipal solid waste (MSW) and landfill disposal without any treatment has increased the continuous generation of landfill leachate. Improper MSW and leachate management are contributing to environmental degradation and water and soil pollution, which must be treated. Numerous works have been conducted on leachate treatments for energy and resource recovery. This review presents a comprehensive study of leachate management in which different treatment methods are discussed to analyze the suitability of processes that can be employed to treat leachate efficiently. Further, the characteristics of leachate are examined as properties of leachate may be varied depending upon the region. Still, several challenges related to leachate management and its treatments are discussed in this study. An integrated system could be a better option for treating leachate because it contains large amounts of organic and inorganic compounds. Proper leachate management would help to recover energy and value-added products (metals).
Collapse
Affiliation(s)
- Apoorva Upadhyay
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Prakhar Talwar
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Nikita Verma
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Pratiksha Dadaji Ahire
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Hemant Khatri
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Shyam Kumar Masakapalli
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, 175075, India.
| | - Nidhi Pareek
- Department of Sports Bio-Sciences, School of Sports Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| | - Vinod Kumar
- Bioenergy and Resource Management Centre, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Andrey A Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM", 1st Institutskiy Proezd, 5, 109428, Moscow, Russia.
| | - Elena A Zhuravleva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia.
| | - Yuriy V Litti
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospekt 33, 2, 119071, Moscow, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
3
|
Fu X, Wais AMH, Yasin Y, Ibrahim IT, Ali AS, Al-Majdi K, Khazaal WM, Hadrawi SK, Abed AS, Riyahi Y, Cao Y. Molecular modeling investigation on mechanism of diazinon pesticide removal from water by single- and multi-walled carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114857. [PMID: 37030051 DOI: 10.1016/j.ecoenv.2023.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
In this study, the mechanism of diazinon adsorption on single-walled carbon nanotubes (SWNTs), as well as multi-walled carbon nanotubes (MWNTs), was investigated using molecular modelling. Determination of the lowest energy sites of different types of carbon nanotubes (CNTs) was demonstrated. The adsorption site locator module was used for this purpose. It was found that the 5-walled CNTs are the best MWNTs for diazinon elimination from water due to their higher interactions with diazinon. In addition, the adsorption mechanism in SWNT and MWNTs was determined to be wholly adsorption on the lateral surface. It is because the geometrical size of diazinon molecules is larger than the inner diameter of SWNT and MWNTs. Furthermore, the contribution of diazinon adsorption on the 5-wall MWNTs was the highest, for the lowest diazinon concentration in the mixture.
Collapse
Affiliation(s)
- Xinbao Fu
- Department of Pharmaceutical and Biological Engineering, Zibo Vocational Institute, Shandong Zibo 255314, China.
| | | | - Yaser Yasin
- College of Medical Technology, Al-Farahidi University, Iraq
| | | | - Ahmed Subhi Ali
- Department of Radiology & Sonar Techniques, AlNoor University College, Bartella, Iraq
| | - Kadhum Al-Majdi
- Department of Biomedical Engineering, Ashur University College, Baghdad, Iraq
| | | | - Salema K Hadrawi
- Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ahmed S Abed
- Department of Prosthetic Dental Technology, Hilla University College, Babylon, Iraq
| | | | - Yan Cao
- School of Computer Science and Engineering, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
4
|
El Oufir Z, Ramézani H, Mathieu N, Delpeux S, Bhatia SK. Influence of force field used in carbon nanostructure reconstruction on simulated phenol adsorption isotherms in aqueous medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Kurniawan TA, Singh D, Avtar R, Othman MHD, Hwang GH, Albadarin AB, Rezakazemi M, Setiadi T, Shirazian S. Resource recovery from landfill leachate: An experimental investigation and perspectives. CHEMOSPHERE 2021; 274:129986. [PMID: 33979934 DOI: 10.1016/j.chemosphere.2021.129986] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the performances of coconut shell waste-based activated carbon (CSWAC) adsorption in batch studies for removal of ammoniacal nitrogen (NH3-N) and refractory pollutants (as indicated by decreasing COD concentration) from landfill leachate. To valorize unused resources, coconut shell, recovered and recycled from agricultural waste, was converted into activated carbon, which can be used for leachate treatment. The ozonation of the CSWAC was conducted to enhance its removal performance for target pollutants. The adsorption mechanisms of refractory pollutants by the adsorbent are proposed. Perspectives on nutrient recovery technologies from landfill leachate from the view-points of downstream processing are presented. Their removal efficiencies for both recalcitrant compounds and ammoniacal nitrogen were compared to those of other techniques reported in previous work. It is found that the ozonated CSWAC substantially removed COD (i.e. 76%) as well as NH3-N (i.e. 75%), as compared to the CSWAC without pretreatment (i.e. COD: 44%; NH3-N: 51%) with NH3-N and COD concentrations of 2750 and 8500 mg/L, respectively. This reveals the need of ozonation for the adsorbent to improve its performance for the removal of COD and NH3-N at optimized reactions: 30 g/L of CSWAC, pH 8, 200 rpm of shaking speed and 20 min of reaction time. Nevertheless, treatment of the leachate samples using the ozonated CSWAC alone was still unable to result in treated effluents that could meet the COD and NH3-N discharge standards below 200 and 5 mg/L, respectively, set by legislative requirements. This reveals that another treatment is necessary to be undertaken to comply with the requirement of their effluent limit.
Collapse
Affiliation(s)
| | - Deepak Singh
- Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong
| | - Ram Avtar
- Faculty of Environmental Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, University Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Goh Hui Hwang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, PR China
| | - Ahmad B Albadarin
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Tjandra Setiadi
- Center for Environmental Studies, Bandung Institute of Technology, Bandung, 40135, Indonesia
| | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Laboratory of Computational Modeling of Drugs, South Ural State University, 454080, Chelyabinsk, Russia
| |
Collapse
|
6
|
Fu D, Kurniawan TA, Avtar R, Xu P, Othman MHD. Recovering heavy metals from electroplating wastewater and their conversion into Zn 2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater. CHEMOSPHERE 2021; 271:129861. [PMID: 33736203 DOI: 10.1016/j.chemosphere.2021.129861] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
This work incorporated technological values into Zn2Cr-layered double hydroxide (LDH), synthesized from unused resources, for removal of pyrophosphate (PP) in electroplating wastewater. To adopt a resource recovery for the remediation of the aquatic environment, the Zn2Cr-LDH was fabricated by co-precipitation from concentrated metals of plating waste that remained as industrial by-products from metal finishing processes. To examine its applicability for water treatment, batch experiments were conducted at optimum M2+/M3+, pH, reaction time, and temperature. To understand the adsorption mechanisms of the PP by the adsorbent, the Zn2Cr-LDH was characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses before and after adsorption treatment. An almost complete PP removal was attained by the Zn2Cr-LDH at optimized conditions: 50 mg/L of PP, 1 g/L of adsorbent, pH 6, and 6 h of reaction. Ion exchange controlled the PP removal by the adsorbent at acidic conditions. The PP removal well fitted a pseudo-second-order kinetics and/or the Langmuir isotherm model with 79 mg/g of PP adsorption capacity. The spent Zn2Cr-LDH was regenerated with NaOH with 86% of efficiency for the first cycle. The treated effluents could comply with the discharge limit of <1 mg/L. Overall, the use of the Zn2Cr-LDH as a low-cost adsorbent for wastewater treatment has contributed to national policy that promotes a zero-waste approach for a circular economy (CE) through a resource recovery paradigm.
Collapse
Affiliation(s)
- Dun Fu
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China; College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian province, PR China
| | - Tonni Agustiono Kurniawan
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian province, PR China; China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia.
| | - Ram Avtar
- Faculty of Environment Earth Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Pan Xu
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institute, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
7
|
Synthesis of multi-organo-functionalized fibrous silica KCC-1 for highly efficient adsorption of acid fuchsine and acid orange II from aqueous solution. Sci Rep 2021; 11:2716. [PMID: 33526831 PMCID: PMC7851152 DOI: 10.1038/s41598-021-81080-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Multi-functionalized fibrous silica KCC-1 (MF-KCC-1) bearing amine, tetrasulfide, and thiol groups was synthesized via a post-functionalization method and fully characterized by several methods such as FTIR, FESEM, EDX-Mapping, TEM, and N2 adsorption-desorption techniques. Due to abundant surface functional groups, accessible active adsorption sites, high surface area (572 m2 g-1), large pore volume (0.98 cm3 g-1), and unique fibrous structure, mesoporous MF-KCC-1 was used as a potential adsorbent for the uptake of acid fuchsine (AF) and acid orange II (AO) from water. Different adsorption factors such as pH of the dye solution, the amount of adsorbent, initial dye concentration, and contact time, affecting the uptake process were optimized and isotherm and kinetic studies were conducted to find the possible mechanism involved in the process. For both AF and AO dyes, the Langmuir isotherm model and the PFO kinetic model show the most agreement with the experimental data. According to the Langmuir isotherm, the calculated maximum adsorption capacity for AF and AO were found to be 574.5 mg g-1 and 605.9 mg g-1, respectively, surpassing most adsorption capacities reported until now which is indicative of the high potential of mesoporous MF-KCC-1 as an adsorbent for removal applications.
Collapse
|
8
|
Pelalak R, Soltani R, Heidari Z, Malekshah RE, Aallaei M, Marjani A, Rezakazemi M, Kurniawan TA, Shirazian S. Molecular dynamics simulation of novel diamino-functionalized hollow mesosilica spheres for adsorption of dyes from synthetic wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114812] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. WATER 2020. [DOI: 10.3390/w12102921] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely recognized as priority organic pollutants in wastewater with toxic effects on both plants and animals. Thus, the remediation of these pollutants has been an active area of research in the field of environmental science and engineering. This review highlighted the advantage of adsorption technology in the removal of PAHs and phenols in wastewater. The literature presented on the applications of various porous carbon materials such as biochar, activated carbon (AC), carbon nanotubes (CNTs), and graphene as potential adsorbents for these pollutants has been critically reviewed and analyzed. Under similar conditions, the use of porous polymers such as Chitosan and molecularly imprinted polymers (MIPs) have been well presented. The high adsorption capacities of advanced porous materials such as mesoporous silica and metal-organic frameworks have been considered and evaluated. The preference of these materials, higher adsorption efficiencies, mechanism of adsorptions, and possible challenges have been discussed. Recommendations have been proposed for commercialization, pilot, and industrial-scale applications of the studied adsorbents towards persistent organic pollutants (POPs) removal from wastewater.
Collapse
|
10
|
Marjani A, Taghvaie Nakhjiri A, Adimi M, Fathinejad Jirandehi H, Shirazian S. Modification of polyethersulfone membrane using MWCNT-NH2 nanoparticles and its application in the separation of azeotropic solutions by means of pervaporation. PLoS One 2020; 15:e0236529. [PMID: 32697797 PMCID: PMC7375585 DOI: 10.1371/journal.pone.0236529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, functionalized multi-walled carbon nanotubes (MWCNT-NH2) were synthesized as an additive for the preparation of mixed matrix membranes (MMMs) and then were investigated by FTIR and FE-SEM techniques. Polyether sulfone (PES) polymeric membrane modified with functionalized MWCNT-NH2 carbon nanotubes was prepared by phase inversion method. The effect of MWCNT-NH2 on the morphology and property of the PES membrane was evaluated using scanning electron microscopy. The flux, enrichment factor and swelling properties of modified membranes were also used to investigate the membranes performance. The results showed that the flux and enrichment factor in modified PES membrane containing 5 wt.% of functionalized MWCNT-NH2 carbon nanotubes were obtained 1.2 L.m-2h-1 and 3.3, respectively. The influence of methanol concentration on the flux and enrichment factor was investigated. The results corroborated that the flux didn’t change significantly, while the enrichment factor was decreased.
Collapse
Affiliation(s)
- Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ali Taghvaie Nakhjiri
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Adimi
- Department of Chemical Engineering, Farahan Branch, Islamic Azad University, Farmahin, Farahan, Iran
| | | | - Saeed Shirazian
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- * E-mail:
| |
Collapse
|
11
|
Inamuddin, Kanchi S, Kashmery HA. Electrochemical Biosensor for the Detection of Amygdalin in Apple Seeds with a Hybrid of f-MWCNTs/CoFe2O4 Nanocomposite. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016666200211093603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Amygdalin is a natural compound known for curing cancer. It is seen in
several plants including in bitter almonds, apricots, peaches, apples, and plum seeds (kernels).
Amygdalin is a toxic molecule containing a nitrile group, due to which toxic cyanide anion releases
by the action of a β-glucosidase. The consumption of amygdalin may lead to cyanide poisoning in
the human body. Therefore, for the first time, this work is aimed at developing a novel electrochemical
biosensor for the detection of Amygdalin (AMG) in apple seed samples.
Methods:
The proposed electrochemical biosensor was fabricated by immobilizing cytochrome c
(Cyt c) on a Glassy Carbon Electrode (GCE) with nanocomposite of cobalt ferrite nanoparticles
(CoFe2O4 NPs) and functionalised multiwalled carbon nanotubes (f-MWCNTs). The characterization
of the synthesized nanocomposite was performed with FTIR, TEM, TGA/DSC, and XRD techniques.
Moreover, various experimental parameters such as the effect of pH, deposition time, sweep rate, potential,
and enzyme incubation time and interference were also studied.
Results:
The fabricated biosensor enhanced the peak current by 10-folds compared to unmodified
GCE. Under optimized experimental conditions, the biosensor exhibited linear response from 2 to 20
μM, with a linear regression equation Ipa (μA) = 8.4989 c + 6.6307 (R² = 0.9927). The LOD’s and
LOQ’s were found to be 0.0112 μM and 0.2213 μM, respectively.
Conclusion:
The designed biosensor was successfully applied for the analysis of AMG content in the
apple seed samples. The outcomes of this study identify the efficient electrocatalytic activity of the
fabricated nanocomposite as significant electronic factors as major contributors to the electron transfer
mechanism, with promising scope for the design of biosensor to sense toxic molecules.
Collapse
Affiliation(s)
- Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suvardhan Kanchi
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Heba A. Kashmery
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Ehsani M, Aroujalian A. Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO
2
) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Masoume Ehsani
- Department of Chemical EngineeringAmirkabir University of Technology (Tehran Polytechnic) Hafez Ave., P.O. Box 15875‐4413, Tehran Iran
| | - Abdolreza Aroujalian
- Department of Chemical EngineeringAmirkabir University of Technology (Tehran Polytechnic) Hafez Ave., P.O. Box 15875‐4413, Tehran Iran
- Food Process Engineering and Biotechnology Research Center, Amirkabir University of Technology (Tehran Polytechnic) Hafez Ave., P.O. Box 15875‐4413, Tehran Iran
| |
Collapse
|
13
|
Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, Shirazian S. Applicability of BaTiO 3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV-vis irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113182. [PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 05/27/2023]
Abstract
Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
Collapse
Affiliation(s)
- Zhu Mengting
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Tonni Agustiono Kurniawan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China.
| | - Song Fei
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Tong Ouyang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
14
|
Riasat Harami H, Riazi Fini F, Rezakazemi M, Shirazian S. Sorption in mixed matrix membranes: Experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Shakeel N, Ahmad A, Ahamed MI, Inamuddin, Asiri AM. Kraton based polymeric nanocomposite bioanode for the application in a biofuel cell. Enzyme Microb Technol 2019; 127:43-49. [PMID: 31088615 DOI: 10.1016/j.enzmictec.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
The objective of this work is to introduce a nanocomposite based bioanode for biofuel cell application. The as-prepared Kraton/MWCNTs nanocomposite was used as a current enhancer and ferritin (Frt) as a mediator between glucose oxidase (GOx) and the electrode surface. The hybrid anode achieved enzymatic oxidation of glucose by the nanocomposite reflecting an efficient energy conversion from glucose. The resulting Kraton/MWCNTs/Frt/GOx bioande exhibited good catalytic activity towards glucose oxidation along with excellent stability. The maximum current density attained by the bioanode is 1.14 mA cm-2 at the optimum glucose concentration of 60 mM. This enzymatic strategy can be employed to develop other polysaccharide or oligosaccharide fuel cells in which glucose oxidation is involved.
Collapse
Affiliation(s)
- Nimra Shakeel
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Anees Ahmad
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mohd Imran Ahamed
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|