1
|
Elbayoumy E, El-Bindary AA, Nakano T, Aboelnga MM. Silver nanoparticles immobilized on crosslinked vinyl polymer for catalytic reduction of nitrophenol: experimental and computational studies. Sci Rep 2025; 15:717. [PMID: 39753644 PMCID: PMC11698865 DOI: 10.1038/s41598-024-82183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network. The prepared poly(DVB) and Ag/poly(DVB) composite were characterized by different techniques including Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauer Emmett-Teller (BET) analysis. The results exhibit that silver metal was well distributed on the surface of poly(DVB) without any aggregation as a nanocrystals with an average size 13 nm. Also, BET analysis confirm that Ag/poly(DVB) composite is a meso porous material with a surface area 127.428 m²/g. This composite was also applied as a heterogenous catalyst for the reduction of toxic nitrophenol in the industrial wastewater into a less toxic aminophenol with the aid of NaBH4 as reductant. In addition, Ag/poly(DVB) catalyst regards as one of the most active catalyst that exhibits an advantage over the other catalysts showing similar activities in the aspects that it can be more readily prepared than the competitors and that it works at the lowest concentration of NaBH4. Interestingly, DFT calculations were conducted to provide atomistic insights into the reduction mechanism and a detailed catalytic pathway have been proposed. Furthermore, the reusability experiment confirm that Ag/poly(DVB) was stable and can be removed from the reaction mixture by centrifuge and reused for four successive cycles with a slight decrease in their catalytic activity.
Collapse
Affiliation(s)
- Elsayed Elbayoumy
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Ashraf A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Tamaki Nakano
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021, Japan.
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
- Faculty of Science, King Salman International University, Ras Sudr, Sinai, 46612, Egypt.
| |
Collapse
|
2
|
Wang X, Yang Z, Meng L, Li X, Wei H, Ning J, Wang S, Cao D, Hao L. Hydrazone-linked covalent organic frameworks for fluorescence detection of Hg 2. Chem Commun (Camb) 2024. [PMID: 39558873 DOI: 10.1039/d4cc05468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A hydrazone-linked COF (DvDf-C3XJ-COF) with hydrogen-bond reinforcement and abundant coordination sites was synthesized, exhibiting strong fluorescence and high sensitivity/selectivity for Hg2+ detection, with a detection limit of 1.65 × 10-6 M. The fluorescence quenching for Hg2+ is attributed to coordination interactions, which occur through a dynamic quenching process.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Zhaowei Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Lingsuo Meng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Xuehui Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Hongtao Wei
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Jing Ning
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Long Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, P. R. China.
| |
Collapse
|
3
|
Aggour YA, Kenawy ER, Magdy M, Elbayoumy E. Establishing a productive heterogeneous catalyst based on silver nanoparticles supported on a crosslinked vinyl polymer for the reduction of nitrophenol. RSC Adv 2024; 14:30127-30139. [PMID: 39315023 PMCID: PMC11417678 DOI: 10.1039/d4ra05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
The treatment of toxic nitrophenols in industrial wastewater is urgently needed from environmental, health, and economic points of view. The current study addresses the synthesis of the crosslinked vinyl polymer poly(acrylonitrile-co-2-acrylamido-2-methylpropane sulfonic acid) (poly(AN-co-AMPS)) through free radical copolymerization techniques using acrylonitrile (AN) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) monomers with different ratios and potassium persulfate (KPS) as an initiator in an aqueous medium. The prepared copolymer was utilized as a supporting matrix for silver nanoparticles (AgNPs) via the chemical reduction of silver nitrate within the copolymer framework. Different techniques were employed to characterize the prepared poly(AN-co-AMPS) and Ag/poly(AN-co-AMPS) composites, such as Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. The results exhibit that silver metal was excellently dispersed across the surface of poly(AN-co-AMPS) without any agglomeration, presenting as nanocrystals with an average particle size equal to 6.21 nm. Also, BET analysis confirmed that the Ag/poly(AN-co-AMPS) composite exhibits mesoporous characteristics with a surface area of 59.615 m2 g-1. Moreover, the Ag/poly(AN-co-AMPS) composite was effectively applied as a heterogeneous catalyst for the catalytic reduction of hazardous 4-nitrophenols (4-NP) with a rate constant equal to 0.28 min-1 and half-life time equal to 2.47 min to a less toxic compound in the presence of NaBH4 as a reductant. Furthermore, the reusability experiment confirmed the excellent stability of Ag/poly(AN-co-AMPS). The catalyst can be easily separated from the reaction mixture using a simple centrifuge and directly reused for up to four successive cycles without a remarkable decrease in its catalytic activity. The conversion percentage of 4-NP after the four cycles was found to be 93%.
Collapse
Affiliation(s)
- Y A Aggour
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Marwa Magdy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Elsayed Elbayoumy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
4
|
Shao X, Yang D, Wang M, Yue Q. A colorimetric detection of Hg 2+ based on gold nanoparticles synthesized oxidized N-methylpyrrolidone as a reducing agent. Sci Rep 2023; 13:22208. [PMID: 38097761 PMCID: PMC10721636 DOI: 10.1038/s41598-023-49551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
In this study, a gold nanoparticles colorimetric probe (AuNPs) with direct response to mercury ions (Hg2+) were developed using treated N-methylpyrrolidone (NMP) and chloroauric acid (HAuCl4) as precursors. NMP showed good reducibility after high temperature hydrolysis and could be used as reducing and stabilizing agent to synthesize AuNPs. The prepared AuNPs have obvious characteristic absorption peaks and appear wine-red. At the same time, it was found that the presence of Hg2+ can cause the aggregation of AuNPs, increased the absorbance at 700 nm, and changed the color of the solution into blue-gray. This method is capable of sensitive and specific determination of Hg2+ ranging from 1 to 30 μM, with the limit of detection (LOD) at 0.3 μM. The method showed good specificity for the determination of Hg2+ and has the potential to be applied to Hg2+ detection in sewage samples in the environment.
Collapse
Affiliation(s)
- Xiaodong Shao
- State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an, 710077, China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Dou Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
5
|
Rasheed T, Ahmad T, Khan S, Ferry DB, Sher F, Ali A, Majeed S. Graphitic carbon nitride derived probes for the recognition of heavy metal pollutants of environmental concern in water bodies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1142. [PMID: 37665398 DOI: 10.1007/s10661-023-11792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Graphitic carbon nitride (g-CN) has a number of valuable features that have been recognized during the studies related to its photocatalytic activity enhancement derived by visible light. Because of these characteristics, g-CN can be used as a detecting signal transducer with different transmission modalities. The latest up-to-date detection capabilities of modified g-CN nanoarchitectures are covered in this study. The structural features and synthetic methodologies have been discussed in a number of reports. Herein, employment of the g-CN as a promising probing modality for the recognition of different toxic heavy metals is the promising feature of the present study.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals, Korea Research, Institute of Chemical Technology (KRICT) , Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Darim Badur Ferry
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Amjad Ali
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006, Katowice, Poland
| | - Saadat Majeed
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
6
|
Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Shu Y, Ye Q, Dai T, Guan J, Ji Z, Xu Q, Hu X. Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128360. [PMID: 35152110 DOI: 10.1016/j.jhazmat.2022.128360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In-situ growth of CsPbBr3 nanocrystal into Eu-BTC was realized for synthesis of dual-emission CsPbBr3@Eu-BTC by a facile solvothermal method, and a novel ratiometric fluorescence sensor based on the CsPbBr3@Eu-BTC was prepared for rapid, sensitive and visual detection of Hg2+ in aqueous solution. The transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis were used to verify the successful incorporation of CsPbBr3 into the Eu-BTC. Meanwhile, the CsPbBr3@Eu-BTC nanocomposite maintained high fluorescence performance and stability in aqueous solution. After adding Hg2+, the green fluorescence of CsPbBr3 was quenched and the red fluorescence of Eu3+ remained unchanged, while the color changed from green to red obviously. The occurrence of dynamic quenching and electron transfer were verified by fluorescence lifetime, Stern-Volmer quenching constant and XPS analysis. The ratiometric fluorescence sensor shows high analytical performance for Hg2+ detection with a wide linear range of 0-1 μM and a low detection limit of 0.116 nM. In addition, it also shows high selectivity for the detection of Hg2+ and can be successfully applied to detect Hg2+ in environmental water samples. More importantly, a novel paper-based sensor based on the CsPbBr3@Eu-BTC ratiometric probe was successfully manufactured for the visual detection of Hg2+ by naked eyes. This new type of ratiometric fluorescent sensor shows great potential for applications in point-of-care diagnostics.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
8
|
Das D, Alam R, Ali M. Rhodamine 6G-based efficient chemosensor for trivalent metal ions (Al 3+, Cr 3+ and Fe 3+) upon single excitation with applications in combinational logic circuits and memory devices. Analyst 2022; 147:471-479. [PMID: 35019917 DOI: 10.1039/d1an01788h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A new rhodamine 6G-based chemosensor (L3) was synthesized and characterized by 1H, 13C, IR and mass spectroscopy studies. It exhibited an excellent selective and sensitive CHEF-based recognition of trivalent metal ions M3+ (M = Fe, Al and Cr) over mono and di-valent and other trivalent metal ions with prominent enhancement in the absorption and fluorescence intensity for Fe3+ (669-fold), Al3+ (653-fold) and Cr3+ (667-fold) upon the addition of 2.6 equivalent of these metal ions in the probe in H2O/CH3CN (7 : 3, v/v, pH 7.2). The corresponding Kd values were evaluated to be 1.94 × 10-5 (Fe3+), 3.15 × 10-5 (Al3+) and 2.26 × 10-5 M (Cr3+). The quantum yields of L3, [L3-Fe3+], [L3-Al3+] and [L3-Cr3+] complexes in H2O/CH3CN (7 : 3, v/v, pH 7.2) were found to be 0.0005, 0.335, 0.327 and 0.333, respectively, using rhodamine-6G as the standard. The LODs for Fe3+, Al3+ and Cr3+ were determined by 3σ methods and found to be 2.57, 0.78 and 0.47 μM, respectively. The cyanide ion snatched Fe3+ from the [Fe3+-L3] complex and quenched its fluorescence via its ring-closed spirolactam form. Advanced level molecular logic devices using different inputs (2 and 4 input) and a memory device were constructed.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| | - Rabiul Alam
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India.
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India. .,Vice-Chancellor, Aliah University, IIA/27 New Town, Kolkata 700160, India
| |
Collapse
|
9
|
Rasheed T, Nabeel F, Sher F, Khan SUD, Al Kheraif AA. Tailored functional polymeric vesicles as smart nanostructured materials for aqueous monitoring of transition metal cations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Janani B, Alarjani KM, Raju LL, Thomas AM, Das A, Khan SS. A potent multifunctional Ag/Co-polyvinylpyrrolidone nanocomposite for enhanced detection of Cr(III) from environmental samples and its photocatalytic and antibacterial applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118766. [PMID: 32799187 DOI: 10.1016/j.saa.2020.118766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Trivalent chromium (Cr(III)) is considered to exhibit hormesis (bi-phasic dose-response) property, where low dose be beneficial and high dose shows toxic effect. The present work describe the development of a bimetallic Ag/Co-polyvinylpyrrolidone nanocomposite (Ag/Co-PVP NPs) probe to detect and quantify Cr(III) ions from aqueous samples. The hydrodynamic size and zeta potential of the particle was determined to be 29 ± 1.3 nm and -37.19 ± 2.4 mV respectively. The interaction of Cr(III) with Ag/Co-PVP probe showed drastic change in colour of NPs from dark brown to pale yellow, with corresponding blue shift, tapering width and increased peak intensity. The probe showed high specificity towards Cr(III) among the tested metal ions. A linearity was observed between various dilutions of Cr(III) ions (10 to 50 nM) and the absorbance of Ag/Co-PVP NPs at 428 nm with R2 value of 0.998. The minimum detectable limit of Cr(III) was calculated to be 0.6 nM. The influence of salinity, temperature and pH on detection was studied. The probe was found to detect Cr(III) at acidic pH effectively. Competitive metal ions did not interfere the detection of Cr(III). The water sample collected from Noyyal river was taken to estimate Cr(III) by using the prepared probe to ensure practical applicability. The sample contains 9.3 nM of Cr(III) that was cross verified with AAS analysis. Hence, it is understood that the reported probe can be used to detect Cr(III) selectively with high accuracy from aqueous samples. In addition, the particles also exhibited excellent photocatalytic activity under visible light. Ag/Co-PVP nanocomposites exhibited excellent antibacterial activity against both gram +ve (B. subtilis) and gram -ve (E. coli) bacteria.
Collapse
Affiliation(s)
- B Janani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Ajith Mesmin Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Arunava Das
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
11
|
Rasheed T, Nabeel F, Rizwan K, Bilal M, Hussain T, Shehzad SA. Conjugated supramolecular architectures as state-of-the-art materials in detection and remedial measures of nitro based compounds: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Nabeel F, Rasheed T. Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121757. [PMID: 31818652 DOI: 10.1016/j.jhazmat.2019.121757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hydrazine is a hazardous environmental pollutant, which contaminates land, air and water posturing a severe risk to human health. For the first-hand estimation, a qualitative approach (colorimetric) for recognition of hydrazine could suffice. However, for accurate measurement, under the threshold limit value (TLV), a quantitative technique is desired. We report the polymersome-based sensor for visual detection and quantification of hydrazine in water. The rhodol-functionalized amphiphilic hyperbranched multiarm copolymer (HSP-RDL) was self-assembled into vesicles. The HSP-RDL vesicle probe exhibited high sensitivity and selectivity for hydrazine recognition in presence of various competitive species such as cations, anions, and neutral species. The fast responsive pink color change from colorless could be visualized with naked eye due to spirolactone ring opening by hydrazinolysis triggered strong fluorescence emission. The vesicle probe could detect hydrazine in water with a limit of detection (LOD) value of 2 nM (0.0652 ppb), which is lower than TLV (10 ppb) given by USEPA (United States Environmental Protection Agency). Furthermore, the vesicle probe could quantify hydrazine (recovery ≥ 99 %) in a wastewater sample collected from Huangpu river. The membrane-permeable characteristics of HSP-RDL led hydrazine detection in live cells through confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Faran Nabeel
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Guo X, Huang J, Wei Y, Zeng Q, Wang L. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS 2 quantum dots. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120969. [PMID: 31404893 DOI: 10.1016/j.jhazmat.2019.120969] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, the B-MoS2 QDs, boronic acid functionalized MoS2 quantum dots, are synthesized by a simple aminoacylation reaction between MoS2 QDs and 3-aminobenzeneboronic acid (APBA). It not only exhibits excellent thermo-stability, photo-stability and good salt tolerance, but shows excellent fluorescence stability even under industrial wastewater with high concentration. These good characters can be used to construct a new fluorescence sensor for sensitive and selective detection of mercury ions (Hg2+). The fluorescence intensity of B-MoS2 QDs linearly decreases with the increase of Hg2+ concentration ranging from 0.005 to 41 μmol L-1, and the limit of detection as low as 1.8 nmol L-1. Due to the mercury ion-promoted transmetalation reaction of aryl boronic acid, this proposed method exhibits fast response, ultra-sensitivity and high selectivity for analysis of Hg2+ in different environmental water, and which also uses to online monitoring of Hg2+. The B-MoS2 QDs-based test paper can be used to detect the trace amounts of Hg2+ under UV lamp by naked eyes, suggesting that the proposed method has potential application in on-site monitoring of environmental Hg2+.
Collapse
Affiliation(s)
- Xinrong Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jianzhi Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Yubo Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Qiang Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
14
|
Rasheed T, Nabeel F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213065] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Chromium speciation by isophthalic acid-doped polymer dots as sensitive and selective fluorescent probes. Talanta 2019; 209:120521. [PMID: 31892071 DOI: 10.1016/j.talanta.2019.120521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 11/23/2022]
Abstract
Hexavalent chromium is a known carcinogen, among all species of chromium ions, for the respiratory tract in humans. In the present work, a new facile probe is developed for rapid and sensitive determination of Cr(VI) based on utilizing highly fluorescent conjugated poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3) thiadiazole)] (PFBT) polymer dots (PDs). The PDs are easily functionalized by doping of isophthalic acid (IPA) into the target PDs during a single step preparation. The prepared PDs with an average diameter of 30 nm illustrated a strong fluorescence with an emission peak centered at 530 nm (photo-excited at 480 nm). The strong fluorescence of PDs is selectively and significantly quench with Cr(VI), while it does not change by Cr(III) ion and, thus, can facilitate a chromium speciation process. The proposed mechanism is an inner filter effect (IFE) mechanism, in which the absorption bands of Cr(IV) overlaps with the emission and excitation bands of the modified PDs. The prepared PDs revealed a good linear relationship from 0.1 to 1000 μmol L-1 for Cr(VI) with a detection limit of 0.03 μmol L-1, which further used to track the Cr distribution in water samples. Finally, the IPA-doped PDs with excellent optical properties, biocompatibility, and high quantum yield showed promising potential in tracking Cr species and specifying of different Cr ions inside the human cells, which opening a new door toward getting a better insight into the cell function and metabolism in the presence of heavy metal ions, and especially chromium ions.
Collapse
|
16
|
Rasheed T, Nabeel F, Adeel M, Rizwan K, Bilal M, Iqbal HM. Carbon nanotubes-based cues: A pathway to future sensing and detection of hazardous pollutants. J Mol Liq 2019; 292:111425. [DOI: 10.1016/j.molliq.2019.111425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Rasheed T, Nabeel F, Shafi S. Chromogenic vesicles for aqueous detection and quantification of Hg2+/Cu2+ in real water samples. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Sebastian M, Aravind A, Mathew B. Green Silver Nanoparticles Based Multi-Technique Sensor for Environmental Hazardous Cu(II) Ion. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-0608-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HMN. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. ENVIRONMENT INTERNATIONAL 2019; 122:52-66. [PMID: 30503315 DOI: 10.1016/j.envint.2018.11.038] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/08/2023]
Abstract
In recent years, emerging contaminants (ECs) of high concern are broadly distributed throughout the environmental matrices because of various industrial practices and anthropogenic inputs, i.e., human-made activities. With ever increasing scientific knowledge, technological advancement, socio-economic awareness, people are now more concern about the widespread distribution of environmentally related ECs of high concern. As, ECs possess serious ecological threats and potential risks to human health and aquatic life, even at minor concentrations. The controlled or uncontrolled discharge and long-term persistence of ECs that includes micro-pollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, toxins, and industrially-related synthetic dyes and dyes-containing hazardous pollutants, etc. pose a significant challenge to policy regulators, engineers, and scientific community. The conventional treatment technologies are proved ineffective for the complete elimination and removal of an array of contaminants of emerging environmental concern in various biological and environmental samples. In order to overcome the aforementioned ecological threats, tremendous research efforts have been made to boost the efficiency of remediation techniques or develop new modalities to detect, quantify and treat the samples efficiently. The boom in biotechnology and environmental engineering offers potential opportunities to develop advanced and innovative remediation techniques in the field of water treatment. This review discusses the environmental and health hazards associated with a widespread distribution of micro-pollutants, pesticides, pharmaceuticals, hormones, and industrially-related synthetic dyes and dyes-containing hazardous pollutants, etc. in the water bodies, i.e., surface water, groundwater, and industrial wastewater streams. Life-cycle distribution of emerging (micro)-pollutants with suitable examples from various industrial sources viewpoints is also discussed. The later part of the review focuses on innovative and cost-effective remediation (removal) approaches from phase-changing treatment technologies for these ECs of high concern.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China.
| | - Faran Nabeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|
20
|
Rasheed T, Nabeel F, Adeel M, Bilal M, Iqbal HM. “Turn-on” fluorescent sensor-based probing of toxic Hg(II) and Cu(II) with potential intracellular monitoring. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019; 17:696-701. [DOI: 10.1016/j.bcab.2019.01.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Rasheed T, Nabeel F, Li C, Zhang Y. Rhodol assisted alternating copolymer based chromogenic vesicles for the aqueous detection and quantification of hydrazine via switch-on strategy. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Cabral Pinto MMS, Ferreira da Silva EA. Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:E2. [PMID: 30577436 PMCID: PMC6338986 DOI: 10.3390/ijerph16010002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
The chemical composition of surface geological materials may cause metabolic changes and promote endemic diseases (e.g., oncological, gastrointestinal, neurological or cardiovascular diseases). The results of a geochemical survey is presented following the guidelines proposed by the International Project IGCP 259 performed on the alluvium of Santiago Island (Cape Verde) and focused on public health issues. Geochemical mapping is the base knowledge needed to determine critical contents of potential toxic elements and the potentially harmful regions in the planet. This work presents maps of baseline values of potentially toxic elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn) in Santiago alluvium and the assessment of their human health risks. According to the results the Cd, Co, Cr, Ni and V baseline values are above the Canadian guidelines for stream sediments (for any proposal use) and for soils (for agricultural and residential proposal uses) and also above the target values of Dutch guidelines. Hazard indexes (HI) were calculated for children and adults. For children (HI) are higher than 1 for Co, Cr and Mn, indicating potential non-carcinogenic risk. For the other elements and for adults there is no potential non-carcinogenic risk. Cancer risk was calculated for Cd, Cr and Ni exposures, for adults and children, and the results are only slightly higher than the carcinogenic target risk of 1 × 10-6 for adults exposed to Cr by inhalation. However, these results may be underestimated because alluvial contaminants may be indirectly ingested by groundwater and by crop and vegetables consumption.
Collapse
Affiliation(s)
- Marina M S Cabral Pinto
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|