1
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
2
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
Srinivasan P, Madhu DK, Pedugu Sivaraman S, Kuppusamy S, Nagarajan S, Rao CB, Kancharlapalli Chinaraga P, Mohan AM, Deivasigamani P. Chromoionophore decorated renewable solid-state polymer monolithic naked eye sensor for the selective sensing and recovery of ultra-trace toxic cadmium ions in aqueous environment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Mazaheri M, Moghimi H, Taheri RA. Urea impregnated multiwalled carbon nanotubes; a formaldehyde scavenger for urea formaldehyde adhesives and medium density fiberboards bonded with them. J Appl Polym Sci 2022. [DOI: 10.1002/app.51445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mehrdad Mazaheri
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology School of Biology, College of Science, University of Tehran Tehran Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|
6
|
Adsorptive performance of tetracarboxylic acid-modified magnetic silica nanocomposite for recoverable efficient removal of toxic Cd(II) from aqueous environment: Equilibrium, isotherm, and reusability studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Ahamad T, Naushad M, Ubaidullah M, Alshehri S. Fabrication of Highly Porous Polymeric Nanocomposite for the Removal of Radioactive U(VI) and Eu(III) Ions from Aqueous Solution. Polymers (Basel) 2020; 12:E2940. [PMID: 33316959 PMCID: PMC7763886 DOI: 10.3390/polym12122940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022] Open
Abstract
In the present study, a polymeric nanocomposite, CoFe2O4@DHBF, was fabricated using 2,4 dihydroxybenzaldehyde and formaldehyde in basic medium with CoFe2O4 nanoparticles. The fabricated nanocomposite was characterized using FTIR, TGA, XRD, SEM, TEM, and XPS analyses. The analytical results revealed that the magnetic nanocomposite was fabricated successfully with high surface area 370.24 m2/g. The fabricated CoFe2O4@DHBF was used as an efficient adsorbent for the adsorption of U(VI) and Eu(III) ions from contaminated water. pH, initial concentration, adsorption time, and the temperature of the contaminated water solution affecting the adsorption ability of the nanocomposites were studied. The batch adsorption results exposed that the adsorption capacity for the removal of U(VI) and Eu(III) was found to be 237.5 and 225.5 mg/g. The adsorption kinetics support that both the metal ions follow second order adsorption kinetics. The adsorption isotherm well fits with the Langmuir adsorption isotherm and the correlation coefficient (R2) values were found to be 0.9920 and 0.9913 for the adsorption of U(VI) and Eu(III), respectively. It was noticed that the fabricated nanocomposites show excellent regeneration ability and about 220.1 and 211.3 mg/g adsorption capacity remains with U(VI) and Eu(III) under optimum conditions.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| | - Mu. Naushad
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- School of Life and Allied Health Sciences, Glocal University, Saharanpur 247001, India
| | - Mohd Ubaidullah
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| | - Saad Alshehri
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (M.N.); (M.U.); (S.A.)
| |
Collapse
|
9
|
Advances in magnetic porous organic frameworks for analysis and adsorption applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Godiya CB, Kumar S, Xiao Y. Amine functionalized egg albumin hydrogel with enhanced adsorption potential for diclofenac sodium in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122417. [PMID: 32143162 DOI: 10.1016/j.jhazmat.2020.122417] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The removal of diclofenac sodium (DFS) from wastewater has attracted increasing attention because it is within the extensively prescribed nonsteroidal anti-inflammatory drugs and pose ecotoxicity. Therefore, fabrication of versatile adsorbents of low-cost, higher-effectiveness and excellent recyclability is significant for the treatment of DFS contaminated wastewater. This work reports a promising biobased egg albumin (ALB) hydrogel functionalized with a large density of adsorptive amine sites via polyethyleneimine (PEI). The composite ALB/PEI hydrogel demonstrated an excellent DFS removal capacity, i.e. 232.5 mg/g, in an optimum experimental condition (pH∼6; contact time∼180 min; adsorbent dosage∼0.5 g/L) which revealed to be considerably higher or competitive than many reported adsorbents. The adsorption isotherms better accorded with the Langmuir model and the kinetics with the pseudo second-order model, indicating the mono-layer chemisorption process. Besides, the regeneration steps up to four sequential adsorption/desorption cycles demonstrated an excellent reusability. The Fourier-transform infrared spectrometry (FTIR), and X-ray photoelectron spectroscopy (XPS) results implied that the adsorption process followed via the electrostatic interactions, hydrogen bonding, and π-π stacking between the functionality of hydrogel and aromatic rings of DFS. Considering the low-cost, and an excellent DFS removal capacity, the natural composite ALB/PEI hydrogel could be a promising adsorbent for the treatment of DFS contaminated wastewater.
Collapse
Affiliation(s)
- Chirag B Godiya
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, PR China.
| | - Sanjay Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Bidholi, Via- Premnagar, Dehradun, 248007, India.
| | - Yonghou Xiao
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, PR China.
| |
Collapse
|
11
|
Chen M, Liu J, Bi Y, Rehman S, Dang Z, Wu P. Multifunctional magnetic MgMn-oxide composite for efficient purification of Cd 2+ and paracetamol pollution: Synergetic effect and stability. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122078. [PMID: 31962212 DOI: 10.1016/j.jhazmat.2020.122078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
A multifunctional magnetic composite (0.3Ma-MgMnLDO-a) with the function of Cd2+ adsorption and paracetamol (PAM) degradation was successfully fabricated. Surface morphology showed that Fe3O4 agglomeration was overcome on composite. The composite had high specific surface area of 105.32 m2 g-1 and saturation magnetization of 40 emu∙g-1. 0.3Ma-MgMnLDO-a could reach Cd2+ adsorption equilibrium within 5 min with 99 % removal rate. The maximum adsorption capacity was 3.76 mmol·g-1 (422.62 mg g-1), which apparently higher than that of Fe3O4-a and MgMnLDO-a, indicating that the Fe/Mn synergism results in excellent ability for Cd2+ adsorption. Moreover, the composite could efficiently activate peroxymonosulfate (PMS) to rapid degrade PAM with the highest first-order rate constants (kobs = 0.116 min-1) and total organic carbon (TOC) removal rate (67.7 %), which also due to the contribution of Fe/Mn synergism in PMS activation. The cycling of MnIII/MnIV and FeII/FeIII played an important role in activating PMS to generateO2-•, 1O2 and OH for degradation. The composite exhibited both stable adsorption and catalytic performance on wide pH (3-9) and five reuse cycles. Notably, there was mutual promotion between Cd2+ and PAM adsorption, while the coexistence of Cd2+ had slight inhibition on PAM degradation. Overall, the magnetic composite had promising application for purifying heavy metals and pharmaceuticals.
Collapse
Affiliation(s)
- Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Yingzhi Bi
- School of Geoscience, The University of Edinburgh, Edinburgh, England, United Kingdom
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Ahamad T, Naushad M, Al-Shahrani T, Al-Hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol 2020; 147:258-267. [PMID: 31917217 DOI: 10.1016/j.ijbiomac.2020.01.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022]
Abstract
In the present study, the magnetic nanocomposite is fabricated using chitosan, thiobarbituric acid, malondialdehyde and Fe3O4 nanoparticles (CTM@Fe3O4). The fabricated nanocomposite (CTM@Fe3O4) is characterized using FTIR, TGA, BET, XRD, Raman, XPS, FESEM, and HRTEM techniques. The results of BET analysis confirmed that the nanocomposite has a mesoporous structure with high surface area of 376 m2 g-1 and high pore volume 0.3828 cm3 g-1. The adsorption of tetracycline (TC) onto CTM@Fe3O4 adsorbent is carried out using batch technique by changing several factors such as pH, concentration, contact time, and temperature. Langmuir and pseudo-second-order nonlinear models were found to be the best-fit models to predict isotherms and kinetics of adsorption, respectively. The highest adsorption capacity of 215.31mg/g was achieved at the optimum conditions of 0.05g adsorbent dosage, 60mg/L TC concentration. Overall, results demonstrated that CTM@Fe3O4 nanocomposite was an excellent adsorbent material with superparamagnetic properties, which allowed the separation as well as recovery of the adsorbent from aqueous solution using external magnet for effective industrial applications.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thamraa Al-Shahrani
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noorah Al-Hokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Application of Geopolymers Modified with Chitosan as Novel Composites for Efficient Removal of Hg(II), Cd(II), and Pb(II) Ions from Aqueous Media. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01380-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|