1
|
Kar A, Pradeep CP. Mixed Organic Counterion Strategy Modulates the Self-Assembly of Polyoxometalate Hybrids into Toroids and Affects Their Photochromic and Photocatalytic Properties. Inorg Chem 2022; 61:20561-20575. [DOI: 10.1021/acs.inorgchem.2c03395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aranya Kar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh175005, India
| | - Chullikkattil P. Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh175005, India
| |
Collapse
|
2
|
Fatima A, Ali A, Rajan R, Verma I, Muthu S, Siddiqui N, Garg P, Javed S. Experimental Spectroscopic, DFT, Molecular Docking, and Molecular Dynamics Simulation Investigations on m-Phenylenediamine (Monomer and Trimer). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2150655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Aysha Fatima
- S.O.S in Chemistry, Jiwaji University, Gwalior, India
| | - Akram Ali
- Department of Chemistry, CMP College, Allahabad, India
| | - Ramya Rajan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Indresh Verma
- Department of Chemistry, Indian Institute of Technology, Kanpur, India
| | - S. Muthu
- Department of Physics, Aringnar Anna Govt. Arts College, Cheyyar, India
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute Agra, Agra, India
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, India
| | - Saleem Javed
- Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Hua J, Wei X, Li Y, Li L, Zhang H, Wang F, Zhang C, Ma X. A Cyclen-Functionalized Cobalt-Substituted Sandwich-Type Tungstoarsenate with Versatility in Removal of Methylene Blue and Anti-ROS-Sensitive Tumor Cells. Molecules 2022; 27:molecules27196451. [PMID: 36234988 PMCID: PMC9573041 DOI: 10.3390/molecules27196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet–visible (UV–Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8– with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co–cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.
Collapse
Affiliation(s)
- Jiai Hua
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Xueman Wei
- Department of Geriatrics, First Affiliated Hospital of Naval Medical University, Shanghai 200081, China
| | - Yifeng Li
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Lingzhi Li
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Hui Zhang
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Feng Wang
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Xiang Ma
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| |
Collapse
|
4
|
Chang J, Li M, Du J, Ma M, Xing C, Sun L, Ma P. A Nickel-Containing Polyoxomolybdate as an Efficient Antibacterial Agent for Water Treatment. Int J Mol Sci 2022; 23:ijms23179651. [PMID: 36077048 PMCID: PMC9456081 DOI: 10.3390/ijms23179651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022] Open
Abstract
In view of the water pollution issues caused by pathogenic microorganisms and harmful organic contaminants, nontoxic, environmentally friendly, and efficient antimicrobial agents are urgently required. Herein, a nickel-based Keggin polyoxomolybdate [Ni(L)(HL)]2H[PMo12O40] 4H2O (1, HL = 2-acetylpyrazine thiosemicarbazone) was prepared via a facile hydrothermal method and successfully characterized. Compound 1 exhibited high stability in a wide range of pH values from 4 to 10. 1 demonstrated significant antibacterial activity, with minimum inhibitory concentration (MIC) values in the range of 0.0019–0.2400 µg/mL against four types of bacteria, including Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), and Agrobacterium tumefaciens (A. tumefaciens). Further time-kill studies indicated that 1 killed almost all (99.9%) of E. coli and S. aureus. Meanwhile, the possible antibacterial mechanism was explored, and the results indicate that the antibacterial properties of 1 originate from the synergistic effect between [Ni(L)(HL)]+ and [PMo12O40]3−. In addition, 1 presented effective adsorption of basic fuchsin (BF) dyes. The kinetic data fitted a pseudo-second-order kinetic model well, and the maximum adsorption efficiency for the BF dyes (29.81 mg/g) was determined by the data fit of the Freundlich isotherm model. The results show that BF adsorption was dominated by both chemical adsorption and multilayer adsorption. This work provides evidence that 1 has potential to effectively remove dyes and pathogenic bacteria from wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Sun
- Correspondence: (L.S.); (P.M.)
| | | |
Collapse
|
5
|
He H, Xu P, Wang D, Zhou H, Chen C. Polyoxometalate-modified halloysite nanotubes-based thin-film nanocomposite membrane for efficient organic solvent nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Ma X, Hua J, Xu C, Zhang L, Wang Y, Zhang J, Cao L, Niu Y, Ma P. A Heterogeneous Catalyzed Oxidase Consists of Zinc-Substituted Arsenomolybdate with Reactive Oxygen Species Catalytic Ability. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02185-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Ji XY, Yu FY, Li YQ, Zhu HT, Zhao HY, Shi Y, Wang YH, Tan HQ, Li YG. Two-dimensional ultrathin surfactant-encapsulating polyoxometalate assemblies as carriers for monodispersing noble-metal nanoparticles with high catalytic activity and stability. Dalton Trans 2021; 50:1666-1671. [PMID: 33464263 DOI: 10.1039/d0dt03976d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noble metal nanoparticles (NMNPs) with excellent catalytic activity and stability play an important role in the field of environmental governance. A uniform distribution and a strong binding force with the carriers of the noble metal nanoparticles are important, but avoidance of the use of additional reducing agents is a promising direction of research. Herein, 2D ultrathin surfactant-encapsulating polyoxometalate (SEP) nanosheets constructed by the self-assembly of dodecyldimethylammonium bromide (DODA) and molybdophosphate (H3PMo12O40, PMo12) are designed to be versatile carriers for Ag nanoparticles. Under the synergistic effect of the well-arranged PMo12 units, encapsulating hydrophobic oleic acid (OA) and reductive molybdophosphate under Xe lamp irradiation, the silver oleate (AgOA)-derived Ag nanoparticles (5 ± 2 nm) are monodispersed on the DODA-PMo12 assemblies and form the Agx/DODA-PMo12 composite. The optimized Ag4.89/DODA-PMo12 composite exhibits high catalytic activity and stability in the degradation of 4-nitrophenol (4-NP), which reaches a superior rate constant of 6.49 × 10-3 s-1 and without significant deterioration after three recycles. This technique can be facilely promoted to other noble metal nanoparticles with excellent catalytic activity and stability.
Collapse
Affiliation(s)
- Xing-Yu Ji
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Fei-Yang Yu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Ying-Qi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hao-Tian Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hui-Ying Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yue Shi
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|
8
|
Mani C, Ramalingam M, Manickam S, Vijayakumar B, Rani Srinivasalu K. Surfactant Encapsulated Iron (III) Coordinated Phosphomolybdate Hybrid: A Novel Adsorbent for the Selective Removal of Anionic Dyes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chandhru Mani
- Department of Chemistry B.S. Abdur Rahman Crescent Institute of Science and Technology Seethakathi Estate, Vandalur, Chennai Tamil Nadu 600 048 India
| | - Meenakshi Ramalingam
- Department of Chemistry B.S. Abdur Rahman Crescent Institute of Science and Technology Seethakathi Estate, Vandalur, Chennai Tamil Nadu 600 048 India
| | - Sundar Manickam
- Research, Science Academy of India Madambakkam Chennai, Tamil Nadu 603 202 India
| | - Bavithra Vijayakumar
- Department of Chemistry B.S. Abdur Rahman Crescent Institute of Science and Technology Seethakathi Estate, Vandalur, Chennai Tamil Nadu 600 048 India
| | - Kutti Rani Srinivasalu
- Department of Chemistry B.S. Abdur Rahman Crescent Institute of Science and Technology Seethakathi Estate, Vandalur, Chennai Tamil Nadu 600 048 India
| |
Collapse
|
9
|
A new polyniobotungstate based on {GeW9Nb3O40} clusters and nickel cation with photocatalytic properties. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhai H, Zou J, Liu F, Chen F, Yan X, Zhou W. Adsorption removal of methyl violet from aqueous solution by chromium phosphovanadate. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Haoying Zhai
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| | - Jinshan Zou
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| | - Fuming Liu
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| | - Fangyuan Chen
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| | - Xingrong Yan
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| | - Wen‐Jun Zhou
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang China
| |
Collapse
|
11
|
Chaudhary M, Verma M, Raj P, Jena KC, Singh N. IL@CQD catalyzed active ester rearrangement for the detection and removal of cyanide ions. Analyst 2020; 145:3948-3957. [DOI: 10.1039/d0an00361a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recognition of cyanide ion with IL@CQDs catalyzed rearranged product.
Collapse
Affiliation(s)
- Monika Chaudhary
- Centre for Biomedical Engineering
- Indian Institute of Technology Ropar
- Roopnagar
- India
| | | | - Pushap Raj
- Department of Chemistry
- Indian institute of Technology Ropar
- Roopnagar
- India
| | - Kailash C. Jena
- Centre for Biomedical Engineering
- Indian Institute of Technology Ropar
- Roopnagar
- India
- Department of Physics
| | - Narinder Singh
- Department of Chemistry
- Indian institute of Technology Ropar
- Roopnagar
- India
| |
Collapse
|