1
|
Tan KF, Chia LY, Maki MAA, Cheah SC, In LLA, Kumar PV. Gold nanocomposites in colorectal cancer therapy: characterization, selective cytotoxicity, and migration inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03839-z. [PMID: 39878813 DOI: 10.1007/s00210-025-03839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells. A novel gold nanocomposite (EV-β-CD-HA-Chi-AuNCs) functionalized with a targeting ligand (hyaluronic acid), a permeation enhancement excipient (chitosan), and an anticancer inclusive compound consisting of beta-cyclodextrin and everolimus was proposed and prepared via Turkevich method. Characterization was performed with a UV spectrometer, FTIR, Zetasizer, and HRTEM. Its drug release profile was also evaluated in media with three different pH values. Cytotoxicity and biocompatibility studies were performed on a colorectal cancer cell line (Caco-2) and a normal fibroblast line (MRC-5), respectively, via xCELLigence real-time cellular analysis (RTCA) technology. The inhibitory effect on migration was also further tested via the xCELLigence RTCA technique and a scratch assay. Characterization studies revealed the successful formation of EV-β-CD-HA-Chi-AuNCs with a size and charge which are suitable for the use as targeted drug delivery carrier. In the cytotoxic study, the EV-β-CD-HA-Chi-AuNCs showed a lower IC50 (16 ± 1 µg/ml) than the pure drug (25 ± 3 µg/ml) toward a colorectal cell line (Caco-2). In the biocompatibility study, the EV-β-CD-HA-Chi-AuNCs have minimal toxicity, while the pure drug has severe toxicity toward healthy fibroblasts (MRC-5) despite its low concentration. In the cell migration study, the EV-β-CD-HA-Chi-AuNCs also showed a greater inhibitory effect than the pure drug. Compared with the pure drug, the EV-β-CD-HA-Chi-AuNCs exhibit an excellent selective cytotoxicity between cancerous colorectal Caco-2 cells and healthy MRC-5 cells, making it a potential carrier to carry the drug to the cancerous site while maintaining its low toxicity to the surrounding environment. In addition, an increase in the cytotoxic activity of the EV-β-CD-HA-Chi-AuNCs toward cancerous colorectal Caco-2 cells was also observed, which can potentially improve the treatment of colorectal cancer.
Collapse
Grants
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- REIG-FPS-2023-042 Research Excellence and Innovation Grant under Centre of Excellence in Research, Value Innovation and Entrepreneurship (CERVIE), UCSI University, Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
- FRGS/1/2021/SKK0/UCSI/02/5 Ministry of Higher Education (MOHE), Malaysia
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Le Yi Chia
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Marwan Abdelmahmoud Abdelkarim Maki
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Port Dickson, Negeri Sembilan, 71010, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
2
|
Gil CJ, Evans CJ, Li L, Allphin AJ, Tomov ML, Jin L, Vargas M, Hwang B, Wang J, Putaturo V, Kabboul G, Alam AS, Nandwani RK, Wu Y, Sushmit A, Fulton T, Shen M, Kaiser JM, Ning L, Veneziano R, Willet N, Wang G, Drissi H, Weeks ER, Bauser-Heaton HD, Badea CT, Roeder RK, Serpooshan V. Leveraging 3D Bioprinting and Photon-Counting Computed Tomography to Enable Noninvasive Quantitative Tracking of Multifunctional Tissue Engineered Constructs. Adv Healthc Mater 2023; 12:e2302271. [PMID: 37709282 PMCID: PMC10842604 DOI: 10.1002/adhm.202302271] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Indexed: 09/16/2023]
Abstract
3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability. Multiple CT-visible hydrogel-based bioinks, containing distinct molecular (iodine and gadolinium) and NP (iodine-loaded liposome, gold, methacrylated gold (AuMA), and Gd2 O3 ) contrast agents, are used to bioprint scaffolds with varying geometries at adequate fidelity levels. In vitro release studies, together with printing fidelity, mechanical, and biocompatibility tests identified AuMA and Gd2 O3 NPs as optimal reagents to track bioprinted constructs. Spectral PCCT imaging of scaffolds in vitro and subcutaneous implants in mice enabled noninvasive material discrimination and contrast agent quantification. Together, these results establish a novel theranostic platform with high precision, tunability, throughput, and reproducibility and open new prospects for a broad range of applications in the field of precision and personalized regenerative medicine.
Collapse
Affiliation(s)
- Carmen J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Connor J. Evans
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Lan Li
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Martin L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Linqi Jin
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Merlyn Vargas
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Boeun Hwang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Jing Wang
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Victor Putaturo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Gabriella Kabboul
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
| | - Anjum S. Alam
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Roshni K. Nandwani
- Emory University College of Arts and Sciences, Atlanta, GA, United States
| | - Yuxiao Wu
- Emory University College of Arts and Sciences, Atlanta, GA, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Asif Sushmit
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Travis Fulton
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ming Shen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jarred M. Kaiser
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Liqun Ning
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Manassas, VA, United States
| | - Nick Willet
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hicham Drissi
- Research Service, VA Medical Center, Decatur, GA, United States
- Department of Orthopedics, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Eric R. Weeks
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Holly D. Bauser-Heaton
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Sibley Heart Center at Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC, United States
| | - Ryan K. Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, Materials Science and Engineering Graduate Program, University of Notre Dame, Notre Dame, IN, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
3
|
Karimi-Shahri M, Alalikhan A, Hashemian P, Hashemzadeh A, Javid H. The applications of epigallocatechin gallate (EGCG)-nanogold conjugate in cancer therapy. NANOTECHNOLOGY 2023; 34:212001. [PMID: 36535007 DOI: 10.1088/1361-6528/acaca3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Cancer has recently increased the death toll worldwide owing to inadequate therapy and decreased drug bioavailability. Long-term and untargeted chemotherapeutic exposure causes toxicity to healthy cells and drug resistance. These challenges necessitate the development of new methods to increase drug efficacy. Nanotechnology is an emerging field in the engineering of new drug delivery platforms. The phytochemical epigallocatechin gallate (EGCG), the main component of green tea extract and its most bioactive component, offers novel approaches to cancer cell eradication. The current review focuses on the nanogold-based carriers containing EGCG, with an emphasis on the chemotherapeutic effects of EGCG in cancer treatment. The nanoscale vehicle may improve the EGCG solubility and bioavailability while overcoming constraints and cellular barriers. This article reviewed the phytochemical EGCG-based gold nanoplatforms and their major anticancer applications, both individually, and in combination therapy in a few cases.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Electrochemical sensing of biotin-avidin interaction on gold electrode modified by silver nanoparticles through covalent co-assembling. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
5
|
Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:9652. [PMID: 34502560 PMCID: PMC8431817 DOI: 10.3390/ijms22179652] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) have an outstanding position in pharmaceutical, biological, and medical disciplines. Polymeric NPs based on chitosan (CS) can act as excellent drug carriers because of some intrinsic beneficial properties including biocompatibility, biodegradability, non-toxicity, bioactivity, easy preparation, and targeting specificity. Drug transport and release from CS-based particulate systems depend on the extent of cross-linking, morphology, size, and density of the particulate system, as well as physicochemical properties of the drug. All these aspects have to be considered when developing new CS-based NPs as potential drug delivery systems. This comprehensive review is summarizing and discussing recent advances in CS-based NPs being developed and examined for drug delivery. From this point of view, an enhancement of CS properties by its modification is presented. An enhancement in drug delivery by CS NPs is discussed in detail focusing on (i) a brief summarization of basic characteristics of CS NPs, (ii) a categorization of preparation procedures used for CS NPs involving also recent improvements in production schemes of conventional as well as novel CS NPs, (iii) a categorization and evaluation of CS-based-nanocomposites involving their production schemes with organic polymers and inorganic material, and (iv) very recent implementations of CS NPs and nanocomposites in drug delivery.
Collapse
Affiliation(s)
- Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
6
|
Matsumoto M, Kaneko K, Hara M, Matsui M, Morita K, Maruyama T. Covalent immobilization of gold nanoparticles on a plastic substrate and subsequent immobilization of biomolecules. RSC Adv 2021; 11:23409-23417. [PMID: 35479813 PMCID: PMC9036532 DOI: 10.1039/d1ra03902d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
We propose a novel approach to stably immobilize gold nanoparticles (AuNPs) on a plastic substrate and demonstrate that the modified substrate is also capable of immobilizing biomolecules. To immobilize citrate-capped AuNPs, an acrylic substrate was simply dip-coated in a functional polymer solution to decorate the outermost surface with amino groups. Electrostatic interactions between AuNPs and the amino groups immobilized the AuNPs with a high density. The AuNP-modified acrylic substrate was transparent with a red tint. A heat treatment promoted the formation of amide bonds between carboxy groups on the AuNPs and amino groups on the substrate surface. These covalent bonds stabilized the immobilized AuNPs and the resulting substrate was resistant to washing with acid and thiol-containing solutions. The surface density of AuNPs was controlled by the surface density of amino groups on the substrate surface, which was in turn controlled by the dip-coating in the functional polymer solution. We attempted to immobilize functional biomolecules on the AuNPs-functionalized plastic surface by two different approaches. An enzyme (horseradish peroxidase) was successfully immobilized on the AuNPs through amide formation and 5′-thiolated DNA was also immobilized on the AuNPs through S–Au interactions. These chemistries allow for simultaneous immobilization of two different kinds of biomolecules on a plastic substrate without loss of their functional properties. We propose a novel approach to stably immobilize gold nanoparticles (AuNPs) on a plastic substrate and demonstrate that the modified substrate is also capable of immobilizing biomolecules.![]()
Collapse
Affiliation(s)
- Mimari Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Kazuki Kaneko
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Manami Hara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Masaki Matsui
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501 Japan .,Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai, Nada Kobe 657-8501 Japan
| |
Collapse
|
7
|
Li DQ, Wang SY, Meng YJ, Guo ZW, Cheng MM, Li J. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr Polym 2021; 268:118244. [PMID: 34127224 DOI: 10.1016/j.carbpol.2021.118244] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Self-healing hydrogels with pH-responsiveness could protect loaded drugs from being destroyed till it arrives to the target. The pectin-based hydrogel is a candidate due to the health benefit, anti-inflammation, antineoplastic activity, nontoxicity, and biospecific degradation, et al. However, the abundant existence of water-soluble branched heteropolysaccharide chains influenced its performance resulting in limitation of the potential. In the present study, we prepared a series of self-healing pectin/chitosan hydrogels via the Diels-Alder reaction. Moreover, pectin/chitosan composite hydrogel was prepared as a contrast. By comparison, it can be seen that the Diels-Alder reaction greatly improved the cross-linking density of hydrogels. The self-healing experiments showed excellent self-healing performance. In different swelling mediums, significant transformation in the swelling ratio was shown, indicating well-swelling property, pH- and thermo-responsiveness. The drug loading and release studies presented high loading efficiency and sustained release performance. The cytotoxicity assay that showed a high cell proliferation ratio manifested great cytocompatibility.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Shu-Ya Wang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Yu-Jie Meng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Zong-Wei Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Mei-Mei Cheng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China.
| |
Collapse
|
8
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
9
|
Citrate and Polyvinylpyrrolidone Stabilized Silver Nanoparticles as Selective Colorimetric Sensor for Aluminum (III) Ions in Real Water Samples. MATERIALS 2020; 13:ma13061373. [PMID: 32197492 PMCID: PMC7143323 DOI: 10.3390/ma13061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/23/2022]
Abstract
The use of silver nanoparticles stabilized with citrate and polyvinylpyrrolidone as a sensor for aluminum ions determination is proposed in this paper. These non-functionalized and specific nanoparticles provide a highly selective and sensitive detection system for aluminum in acidic solutions. The synthesized nanoparticles were characterized by transmission electron microscopy. Surface plasmon band deconvolution analysis was applied to study the interaction between silver nanoparticles and aluminum ions in solution. The interaction band in the UV-visible region was used as an analytical signal for quantitation purposes. The proposed detection system offers an effective AND wide linearity range (0.1–103 nM), specificity for Al(III) in THE presence of other metallic ions in solution, as well as high sensitivity (limit of detection = 40.5 nM). The proposed silver-nanoparticles-based sensor WAS successfully used for detecting Al(III) in real water samples.
Collapse
|