1
|
Sahoo R, Pramanik P, Das SK, Halder M. Ratiometric luminescence sensing of bio-macromolecules via highly sensitive templated pyrene-based nanoGUMBOS. Analyst 2025; 150:2074-2086. [PMID: 40202404 DOI: 10.1039/d5an00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A series of pyrene-based ionic liquids, comprises a group of uniform materials based on organic salts (GUMBOS), were synthesized by incorporating pyrene butyrate with quaternary alkyl phosphonium or ammonium cations via ion exchange reaction and by virtue of a variation in alkyl chain-length. Water-suspended crystalline pyrene-assimilated nanoparticles (nanoGUMBOS) were subsequently fabricated from the prepared GUMBOS via reprecipitation method. Photophysical and microscopic measurements were performed to confirm the crystalline molecular-level stacking of pyrene fluorophores inside the nanoparticles. The pyrene moieties within the nanoGUMBOS showed a tendency for enhanced self-association upon photo-excitation, resulting in a novel excited-state aggregation-induced emission (ESAIE). Due to the bathochromically-shifted strong aggregation-induced emission, these nanoGUMBOS are further employed in the sensitive and selective ratiometric detection of biomacromolecules in aqueous and serum albumin media. As the excessive use of some biomacromolecules (heparin and protamine) can lead to undesired side-effects in living systems, hence their detection can be very crucial. In most cases, interaction with biomacromolecules like heparin facilitates the formation of excimer species in pyrene systems, but to our utter surprise, here we observed the opposite phenomenon of excimer disintegration. This presents a convenient method for detecting heparin in aqueous and serum albumin media. Furthermore, using the nanoGUMBOS-heparin complex, we can also detect protamine. A detailed study of the detection mechanism is presented in this report.
Collapse
Affiliation(s)
- Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Prabal Pramanik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Mintu Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
2
|
Shahane SD, Mudliar NH, Chawda BR, Momin M, Singh PK. YOPRO-1: A Cyanine-Based Molecular Rotor Probe for Amyloid Fibril Detection. ACS APPLIED BIO MATERIALS 2025; 8:3443-3453. [PMID: 40204648 DOI: 10.1021/acsabm.5c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The widespread occurrence of amyloidosis in many neurodegenerative diseases, including Alzheimer's, highlights the urgent need for early detection methods. Traditional approaches often fall short in sensitivity, specificity, and the ability to operate within complex biological matrices. Fluorescence spectroscopy, which leverages the unique properties of extrinsic fluorescence sensors, has emerged as a promising avenue for amyloid detection. Thioflavin-T (ThT), while extensively utilized, faces several disadvantages such as poor blood-brain barrier penetration, short emission wavelength, and lack of sensitivity to oligomeric protein aggregates. These limitations necessitate the development of improved amyloid probes with enhanced properties for the better detection and understanding of neurodegenerative diseases. In this context, YOPRO-1, a cyanine-based molecular rotor probe, has been identified as a potent amyloid fibril sensor characterized by its turn-on fluorescence response and specificity for amyloid fibrils over native protein forms. Utilizing a variety of spectroscopic techniques, including steady-state emission, ground-state absorption, time-resolved fluorescence, and molecular docking, we demonstrate the superior selectivity and sensitivity of YOPRO-1 for amyloid fibrils. The probe exhibits a remarkable 245-fold increase in fluorescence intensity upon binding to insulin fibrils, which is a common amyloid model. This capability facilitates its application in complex biological matrices, such as high-percentage human serum, which has rarely been demonstrated by previous amyloid sensing probes. Furthermore, the commercial availability of YOPRO-1 avoids the challenges associated with the synthesis of specific probes, thereby marking a significant advancement in amyloid detection methodologies. Our findings highlight the potential of YOPRO-1 as a versatile and effective tool for the early diagnosis of amyloid-related diseases, offering a foundation for future therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Sailee D Shahane
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Bhavya R Chawda
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira Momin
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400085, India
| |
Collapse
|
3
|
Li Y, Zhang Y, Liu X, Dong B, Xu P, Song B. Application of a Near-Infrared Fluorescence Probe Based on Perylene Bisimide in the Detection of Heparin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26626-26632. [PMID: 39637341 DOI: 10.1021/acs.langmuir.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Heparin is widely used to treat thrombosis because it is an effective anticoagulant. However, excessive use of heparin can lead to an increased risk of bleeding, which makes the quantitative detection of heparin very important. An amphiphilic perylene bisimide molecule (denoted PBI-9) was developed, which presented a near-infrared emission peak at 730 nm when it was aggregated. PBI-9 has been utilized in the detection of heparin, as the pyridine cation in PBI-9 binds strongly to highly sulfated heparin through electrostatic interactions. Charge neutralization triggers the self-assembly of PBI-9, which leads to an emission peak shift from 540 nm to 690 nm, corresponding to monomeric emission to excimer emission. This shift was applied for the detection of heparin. Importantly, the interaction between PBI-9 and heparin is not affected by protamine, resulting in high selectivity and minimal interference. PBI-9 is a promising tool for detecting heparin in clinical settings after excess heparin has been neutralized by protamine.
Collapse
Affiliation(s)
- Yueji Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yuteng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xue Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Pan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
4
|
Hu G, Yue D, Chen W, Lin Q, Lyu H. Dual-mode upconversion sensors for detecting differently charged biotargets based on the oxidase-mimicking activity of Ce 4+ and electrostatic control. Talanta 2024; 277:126392. [PMID: 38865959 DOI: 10.1016/j.talanta.2024.126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Heparin is a highly negatively charged sulfated linear polymer glycosaminoglycan that has been widely used as an anticoagulant in medicine. Protamine is a cationic protein rich in arginine that is used to treat the blood-brain barrier during excess heparin surgery. Trypsin is the most important digestive enzyme-encoding generated by the pancreas and can specifically cleave the carboxyl ends of arginine and lysine residues. Heparin, protamine, and trypsin interact and constrain each other, and their fluctuations reflect the body's dysfunction. Therefore, it is necessary to develop a fast, sensitive, and highly selective assay for regularly monitoring the levels of heparin, protamine, and trypsin in serum. Herein, a fluorescent and colorimetric dual-mode upconversion nanoparticle (UCNP) biosensor was used for the determination of heparin, protamine, and trypsin based on the oxidase-mimicking activity of Ce4+ and electrostatic control. The biosensor exhibited sensitive detection of heparin, protamine, and trypsin with low limits of detection (LODs) of 16 ng/mL, 87 ng/mL and 31 ng/mL, respectively. Furthermore, the designed biosensor could eliminate autofluorescence, which not only effectively increased the accuracy of the sensor but also provided a new sensing pathway for the detection of differently charged biotargets.
Collapse
Affiliation(s)
- Gaoya Hu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Daoping Yue
- Ningde City Hospital, Ningde Normal University, Ningde, 352100, China
| | - Weishuan Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingqing Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Bais S, Singh PK. Al 3+-Responsive Ratiometric Fluorescent Sensor for Creatinine Detection: Thioflavin-T and Sulfated-β-Cyclodextrin Synergy. ACS APPLIED BIO MATERIALS 2023; 6:4146-4157. [PMID: 37702182 DOI: 10.1021/acsabm.3c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Kidney disorders are a rising global health issue, necessitating early diagnosis for effective treatment. Creatinine, a metabolic waste product from muscles, serves as an ideal biomarker for kidney damage. The existing optical methods for creatinine detection often involve labor-intensive synthesis processes and present challenges with the aqueous solubility and sensitivity to experimental variations. In this study, we introduce a straightforward fluorescence "turn-on" ratiometric sensor system for creatinine detection in aqueous media with a limit of detection of 0.5 μM. The sensor is based on sulfated-β-cyclodextrin (SCD)-templated H-aggregate of a commercially available, ultrafast rotor dye thioflavin-T (ThT). The Al3+ ion-induced dissociation of ThT-SCD aggregates, followed by reassociation upon creatinine addition, generates a detectable signal. The modulation of monomer/aggregate equilibrium due to the disassembly/reassembly of the ThT-SCD system under Al3+/creatinine influence serves as the optimal strategy for ratiometric creatinine detection in aqueous media. Our sensor framework offers several advantages: utilization of the readily available dye ThT, which eliminates the need for a laborious synthesis of custom fluorescent probes; ratiometric sensing, which improves quantitative analysis accuracy; and compatibility with complex aqueous media. The sensor's practical utility has been successfully demonstrated in artificial urine samples. In summary, our sensor system represents a significant advancement in the rapid, selective, and sensitive detection of the clinically crucial bioanalyte creatinine, offering potential benefits for the early diagnosis and management of kidney disorders.
Collapse
Affiliation(s)
- Sujata Bais
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Gorai S, Mula S, Jonnalgadda PN, Patro BS, Chakraborty G. In house synthesized novel distyryl-BODIPY dye and polymer assembly as deep-red emitting probe for protamine detection. Talanta 2023; 265:124915. [PMID: 37442005 DOI: 10.1016/j.talanta.2023.124915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
In this contribution, we designed and synthesized a deep-red emitting distyryl-BODIPY dye (dye 3) which is non-fluorescent in aqueous solution due to the formation of non-emissive aggregates. However, in presence of an amphiphilic polymer (polystyrene sulfonate, PSS), the aggregated dye molecules de-aggregate and form dye 3-PSS complex, which significantly modulates the optical features of the bound dye. Interestingly, the dye 3-PSS complex shows turn-on fluorescence response in deep-red region in presence of protamine (Pr) due to the formation of dye 3-PSS-Pr ternary complex. Such enhancement follows a linear trend in the dynamic range of 0-8.75 μM of Pr which has been utilized to determine Pr with limit of detection (LOD) of 15.04(±0.5) nM in phosphate buffer. Furthermore, excellent selectivity of the dye 3-PSS system towards Pr allows us to determine Pr even in complex biological matrix like 1% human serum. Thus, dye 3-PSS system can be applied as a very effective tool for the detection and quantification of Pr in deep-red region, overcoming several limitations encountered with the probes in the shorter wavelength region. This is the first report on BODIPY dye based supramolecular assembly for sensing and quantification of protamine.
Collapse
Affiliation(s)
- Sudip Gorai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Padma Nilaya Jonnalgadda
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
7
|
Pandey SP, P K, Dutta T, Chakraborty B, Koner AL, Singh PK. Mitochondria-Directing Fluorogenic Probe: An Efficient Amyloid Marker for Imaging Lipid Metabolite-Induced Protein Aggregation in Live Cells and Caenorhabditis elegans. Anal Chem 2023; 95:6341-6350. [PMID: 37014217 DOI: 10.1021/acs.analchem.2c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aβ-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400056, India
| | - Kavyashree P
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Barsha Chakraborty
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Prabhat K Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
8
|
Singh G, Pandey SP, Singh PK. Guest Binding with Sulfated Cyclodextrins: Does the Size of Cavity Matter? Chemphyschem 2023; 24:e202200421. [PMID: 36228089 DOI: 10.1002/cphc.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Indexed: 01/19/2023]
Abstract
Sulfated cyclodextrins have recently emerged as potential candidates for producing host-induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host-induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host-induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.
Collapse
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan Panvel, Mumbai, 410206, India.,Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
9
|
Pandey SP, Desai AM, Singh PK. A molecular rotor based ratiometric detection scheme for aluminium ions in water. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Kaur J, Mirgane HA, Bhosale SV, Singh PK. A cationic AIEgen and hexametaphosphate based simple and convenient fluorometric assay for alkaline phosphatase and its inhibitor. Org Biomol Chem 2022; 20:4599-4607. [PMID: 35603784 DOI: 10.1039/d2ob00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkaline phosphatase (ALP) is an important biomarker to diagnose a number of diseases, such as anaemia, hepatobiliary diseases, chronic nephritis, and hypothyroidism. Therefore, the development of simple and convenient assays to monitor levels of ALP is highly desirable. In the present study, an aggregation-induced emission based simple, real-time, and direct fluorescence detection platform has been developed, by using a tetracationic pyridinium derivative of tetraphenylethylene (TPy-TPE) and anionic sodium hexametaphosphate (HMP) as component units. The sensing system, based on the TPy-TPE-HMP assembly, is highly responsive to the ALP dependent disintegration of the TPy-TPE-HMP aggregation complex, owing to HMP digestion by ALP. The sensing platform has an ALP detection limit of 16 mU mL-1 and linear range of 0-742 mU mL-1, respectively. The enzyme kinetic parameters, Km and Vmax, have been evaluated. In addition, the potential applicability of the TPy-TPE-HMP sensing system has also been shown with diluted human serum samples. Moreover, the TPy-TPE-HMP probe system is also useful for screening inhibitors of ALP.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
11
|
Singh G, Singh VR, Pandey SP, Singh PK. Sulfated-β-cyclodextrin templated aggregation of a metachromatic dye, Basic Orange 21: A photophysical investigation. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2046277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Um-dae Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Vidya R. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Shrishti P. Pandey
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Mumbai, INDIA
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
12
|
Li H, Zhang Y, Huang Y, Cao D, Wang S. Dissolution-enhanced emission of 1,3,6,8-tetrakis( p-benzoic acid)pyrene for selectively detecting protamine and “on-to-on” heparin detection in water. NEW J CHEM 2022. [DOI: 10.1039/d1nj03946f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A small molecule TBAPy was used as a turn-on fluorescent probe to selectively detect protamine and heparin based on the dissolution-enhanced emission (DEE) phenomenon.
Collapse
Affiliation(s)
- Hongtao Li
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yan Huang
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Chen Y, Wang X, Lu C, Wu W, Wang X. A ratiometric fluorometric probe for doxycycline in food by using bovine serum albumin protected Au nanoclusters. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
He Z, Nie H, Cui J, Zhang X, Yang X, Li C, Yan H. An electrostatically regulated organic self-assembly for rapid and sensitive detection of heparin in serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3620-3626. [PMID: 34312637 DOI: 10.1039/d1ay00863c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heparin (Hep) is a highly negatively charged linear glycosaminoglycan involved in various physiological processes, especially blood coagulation. Hep is also a first-line drug for anticoagulation and prevention of thromboembolism, but its overdose will cause serious side effects. Herein, we designed a long-wavelength double-charged cationic fluorescent probe PYPN, and studied its aggregation state and detection performance for Hep. PYPN was readily synthesized through a one-step reaction without complicated purification. In aqueous medium, PYPN molecules with an amphiphilic structure spontaneously form nano-assemblies, which can be immediately decomposed by Hep due to the formation of a PYPN-Hep complex based on electrostatic attraction. The assembly shows a fast, sensitive and ratiometric fluorescence response to Hep, without being obviously interfered by other compounds. In various serum matrices, the fluorescence intensity ratio F610/F470 has a good linearity with Hep concentration (0-12 μg mL-1), and the detection limit (0.11-0.12 U mL-1) is lower than the minimum concentration (0.2 U mL-1) used in clinical treatment. Our study provides an easy-to-prepare and feasible tool for the selective and sensitive quantification of Hep in serum.
Collapse
Affiliation(s)
- Zhixiao He
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Singh G, Pandey SP, Singh PK. Anionic Polyelectrolyte-Induced Aggregation of Basic Orange 21: A Clue toward Metachromasia. J Phys Chem B 2021; 125:7033-7043. [PMID: 34137609 DOI: 10.1021/acs.jpcb.1c02127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The change in the color of chromophore upon being embedded in a biological tissue is known as metachromasia. Basic Orange 21 (BO21) is a cationic polymethine dye that has been implied as a supravital dye, which produces metachromasia in leukocytes. An improved differential counting of leukocytes has been achieved in the clinical setup based on characteristic metachromatic expressions of BO21 for different types of leukocytes. Although BO21 has been utilized as a chromatic indicator for leukocyte counting, there are limited number of investigations that focus on the factors that may be responsible for the spectral shift in absorption and emission spectra of BO21, which leads to its metachromatic behavior. In this work, we have investigated the effect of a synthetic anionic polyelectrolyte, polystyrene sulfonate (PSS), on the photophysical properties of BO21, using steady-state emission, ground-state absorption, and time-resolved emission measurements, to get an understanding of the factors that may be responsible for the spectral shift of BO21 in the cellular environment. PSS induces aggregation of BO21 molecules with large changes in its photophysical properties; this appears to be most likely the mechanism of spectral shift for BO21 reported in the cellular environment. The employment of external stimulus reveals BO21 aggregates to be significantly responsive toward external stimuli, for example, temperature and presence of salt in the medium, which further strengthens the proposal of aggregate formation. Further, we have also employed fluorescence upconversion spectroscopy with subpicosecond time resolution to estimate the excited-state lifetime of BO21.
Collapse
Affiliation(s)
- Gaurav Singh
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India.,Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
16
|
Awasthi AA, Pandey SP, Singh PK. Supramolecular Control on the Optical Properties of a Dye-Polyelectrolyte Assembly. Chemphyschem 2021; 22:975-984. [PMID: 33759328 DOI: 10.1002/cphc.202100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Control of fluorescent molecular assemblies is an exciting area of research with large potential for various important applications, such as, fluorescence sensing/probing, cell imaging and monitoring drug-delivery. In the present contribution, we have demonstrated control on the extent of aggregation of a dye-polyelectrolyte assembly using a macrocyclic host molecule, sulfobutylether-β-cyclodextrin (SBE-β-CD). Initially, a cationic molecular rotor based organic dye, Auramine-O (AuO), undergoes aggregation in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS), and displays a broad intense new emission band along with large variation in its absorption features and excited-state lifetime. A manipulation of the monomer-aggregate equilibrium of the dye-polyelectrolyte assembly has been achieved by introducing a cyclodextrin based supramolecular host, SBE-β-CD, which leads to relocation of AuO molecules from polyelectrolyte (PSS) to supramolecular host cavity, owing to the formation of a host-guest complex between AuO and SBE-β-CD. A reversible control on this manipulation of monomer-aggregate equilibrium is further achieved by introducing a competitive guest for the host cavity i. e., 1-Adamantanol. Thus, we have demonstrated an interesting control on the dye-polyelectrolyte aggregate assembly using a supramolecular host molecule which open up exciting possibilities to construct responsive materials using a repertoire of various host-specific guest molecules.
Collapse
Affiliation(s)
- Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
17
|
Hu Q, Gong T, Mao Y, Yin Q, Wang Y, Wang H. Two-phase activated colorimetric and ratiometric fluorescent sensor for visual detection of phosgene via AIE coupled TICT processes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119589. [PMID: 33636495 DOI: 10.1016/j.saa.2021.119589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we specifically designed and synthesized an excellent colorimetric and ratiometric fluorescent sensor DPA-CI for rapid and convenient detection of the highly toxic phosgene. DPA-CI was developed by incorporated a diphenylamine (DPA) and a 2-imine-3-benzo[d]imidazole as the enhanced push-pull electronic structure into the coumarin fluorophore matrix. The sensor DPA-CI towards phosgene sensing exhibited both visible colorimetric and ratiometric fluorescent color change in solution and in gaseous conditions with TICT and AIE mechanism respectively, which can be easily distinguished by using the naked eye. Also, the sensor DPA-CI showed splendid sensing performance such as excellent selectivity, rapid response (less than 8 s in THF and 2 min in gaseous condition), and fair sensitivity (limit of detection less than 0.11 ppm in gaseous condition and 0.27 μM in solution). The design strategy based on enhanced push-pull electronic structure with AIE and TICT properties will be helpful to construct a solid optical sensor with excellent potential application prospects for portable and visual sensing of gaseous phosgene through distinct color and ratiometric fluorescence change by the naked eyes.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| | - Tao Gong
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yu Mao
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Qiang Yin
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Yuyuan Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
18
|
Warerkar OD, Mudliar NH, Singh PK. A hemicyanine based fluorescence turn-on sensor for amyloid fibril detection in the far-red region. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Singh VR, Pandey SP, Singh PK. A polyelectrolyte based supramolecular assembly for ratiometric sensing of ATP with very high discrimination from pyrophosphate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhou Y, Jiang H, Wang Y, Zhao S, Hu L, Zhang Y. A cationic on–off fluorescent sensor with AIE properties for heparin and protamine detection. NEW J CHEM 2021. [DOI: 10.1039/d1nj02659c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this research, a distyryl-anthracene derivative (DSAI) with two quaternary ammonium groups was synthesized for highly sensitive detection of heparin and protamine.
Collapse
Affiliation(s)
- Yingxi Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| | | | - Yuting Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Song Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, China
| |
Collapse
|
21
|
Chakraborty G, Singh PK, Pal H. A cationic cyclodextrin assisted aggregation of an anionic pyrene derivative and its stimuli responsive behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
A novel supramolecule-based fluorescence turn-on and ratiometric sensor for highly selective detection of glutathione over cystein and homocystein. Mikrochim Acta 2020; 187:631. [PMID: 33125575 DOI: 10.1007/s00604-020-04602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
A cyclodextrin-based fluorescence light-up and ratiometric sensor is reported for highly selective and sensitive recognition of glutathione over cystein and homocystein. The sensing scheme developed builds up on a supramolecular assembly formed between a molecular rotor dye (ThT) and a polyanionic supramolecular host (sulfated-β-cyclodextrin, SCD). The detection scheme is accomplished as follows: firstly, the bivalent Cu2+ quenches the emission from ThT-SCD assembly by causing the dissociation of ThT molecules from SCD surface. Secondly, when GSH is added to the copper-quenched system, owing to specific interaction between Cu2+ and GSH, Cu2+ is removed from the SCD which again allows the formation of ThT-SCD assembly. Indeed, this scheme of disassembly and reassembly successively caused by Cu2+ and GSH in the aqueous solution empowers our sensor framework to work as a good ratiometric sensor for the detection of GSH. The sensor scheme shows a linear response in the range 0-250 μM with a LOD of 2.4 ± 0.2 μM in aqueous solution and 13.6 ± 0.5 μM in diluted human serum sample. The sensor system is excited at 410 nm and the emission signal is plotted as a ratio of intensity at 545 nm (aggregate band) and 490 nm (monomer band). This ratiometric sensor system is highly selective to glutathione over cystein, homocystein, and other amino acids. Additionally, response of the sensor system towards GSH in complex biological media of serum samples demonstrates its potential for practical utility. Graphical abstract.
Collapse
|
23
|
Pandey SP, Jha P, Singh PK. Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113625] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
An anionic polyelectrolyte induced aggregate assembly of Thioflavin-T: A prospective platform for Protamine sensing. Int J Biol Macromol 2020; 164:1174-1182. [PMID: 32710965 DOI: 10.1016/j.ijbiomac.2020.07.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
Protamine, a polycation, is biologically and medically relevant protein. Protamine exhibits a wide array of functions in biological processes like gene transfer, tissue and organogenesis, cell reproduction, etc. Medically, Protamine is the only clinically approved antidote for Heparin and is routinely used in various surgical interventions, and hence controlling Protamine dosing in patients is very crucial. Taking into account the medical significance of Protamine, designing simple, reliable and sensitive fluorescence sensors is highly desirable. In this work, we propose one such sensitive and reliable fluorescent sensor which is based on a template of dye-polyelectrolyte assembly constituting a molecular rotor dye, Thioflavin-T and an anionic synthetic polyelectrolyte, polystyrene sulfonate. The addition of Protamine, prompts drastic modulations in spectral features of dye-polyelectrolyte assembly which enables sensitive detection of Protamine in aqueous solution. Apart from sensitive detection, our sensing platform aids in highly selective sensing of Protamine compared to other proteins. Moreover, our sensor system is constructed on label-free, inexpensive, commercially available molecules posing as an advantage over other sensor systems which involve laborious synthesis protocols. Most importantly, our sensor template is able to sense Protamine in diluted serum sample, indicating the potential practical utility of our sensor system.
Collapse
|