1
|
Sultanova ED, Bogdanov IM, Gromova NI, Astrakhantseva AV, Kapralov MA, Nizamutdinov AS, Mukhametzyanov TA, Islamov DR, Usachev KS, Serov NY, Burilov VA, Solovieva SE, Antipin IS. Synthesis of zwitterionic asymmetric and symmetric carboxy-imidazolium derivatives and their use in molecular interactions with bovine serum albumin. Org Biomol Chem 2025; 23:1981-1994. [PMID: 39834332 DOI: 10.1039/d4ob01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism. The effect of the oxo-bridge and the presence of a hydrophobic fragment in the structure of the molecules and its influence on their aggregation properties and interaction with BSA has also been studied. According to the fluorescence data, only in the case of the asymmetric derivatives with long alkyl fragments a shift of the BSA emission maximum is observed, indicating a change in the BSA microenvironment. The secondary structure of BSA remains virtually unchanged in the presence of carboxytriazoleimidazolium derivatives, as shown by circular dichroism. No significant changes in the structure of BSA were observed in the presence of zwitterionic compounds with an oxo-bridge at concentrations where fluorescence quenching occurs, as shown by time-resolved fluorescence measurements. Electrophoretic light scattering showed a recharging of BSA from a negative to a positive zeta potential in the presence of amphiphilic derivatives.
Collapse
Affiliation(s)
- Elza D Sultanova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Ilshat M Bogdanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Nadezhda I Gromova
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Anna V Astrakhantseva
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Mikhail A Kapralov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Alexey S Nizamutdinov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Timur A Mukhametzyanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Daut R Islamov
- Institute of Physics, Kazan Federal University, 16a Kremlyovskaya St., Kazan, 420008, Russia
| | - Konstantin S Usachev
- Laboratory for Structural Studies of Biomacromolecules, FRC Kazan Scientific Center of RAS, 2/31 Lobachevskogo Str., Kazan, 420111, Russian Federation
| | - Nikita Y Serov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Vladimir A Burilov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| | - Svetlana E Solovieva
- A.E. Arbuzov Institute of Organic & Physical Chemistry, 8 Arbuzov str., Kazan, 420088, Russian Federation
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan 420018, Russia.
| |
Collapse
|
2
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharova LY. Role of Polyanions and Surfactant Head Group in the Formation of Polymer-Colloid Nanocontainers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1072. [PMID: 36985966 PMCID: PMC10056398 DOI: 10.3390/nano13061072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This study was aimed at the investigation of the supramolecular systems based on cationic surfactants bearing cyclic head groups (imidazolium and pyrrolidinium) and polyanions (polyacrylic acid (PAA) and human serum albumin (HSA)), and factors governing their structural behavior to create functional nanosystems with controlled properties. Research hypothesis. Mixed PE-surfactant complexes based on oppositely charged species are characterized by multifactor behavior strongly affected by the nature of both components. It was expected that the transition from a single surfactant solution to an admixture with PE might provide synergetic effects on structural characteristics and functional activity. To test this assumption, the concentration thresholds of aggregation, dimensional and charge characteristics, and solubilization capacity of amphiphiles in the presence of PEs have been determined by tensiometry, fluorescence and UV-visible spectroscopy, and dynamic and electrophoretic light scattering. RESULTS The formation of mixed surfactant-PAA aggregates with a hydrodynamic diameter of 100-180 nm has been shown. Polyanion additives led to a decrease in the critical micelle concentration of surfactants by two orders of magnitude (from 1 mM to 0.01 mM). A gradual increase in the zeta potential of HAS-surfactant systems from negative to positive value indicates that the electrostatic mechanism contributes to the binding of components. Additionally, 3D and conventional fluorescence spectroscopy showed that imidazolium surfactant had little effect on HSA conformation, and component binding occurs due to hydrogen bonding and Van der Waals interactions through the tryptophan amino acid residue of the protein. Surfactant-polyanion nanostructures improve the solubility of lipophilic medicines such as Warfarin, Amphotericin B, and Meloxicam. PERSPECTIVES Surfactant-PE composition demonstrated beneficial solubilization activity and can be recommended for the construction of nanocontainers for hydrophobic drugs, with their efficacy tuned by the variation in surfactant head group and the nature of polyanions.
Collapse
|
3
|
Calix[4]Resorcinarene Carboxybetaines and Carboxybetaine Esters: Synthesis, Investigation of In Vitro Toxicity, Anti-Platelet Effects, Anticoagulant Activity, and BSA Binding Affinities. Int J Mol Sci 2022; 23:ijms232315298. [PMID: 36499625 PMCID: PMC9740030 DOI: 10.3390/ijms232315298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
As a result of bright complexation properties, easy functionalization and the ability to self-organize in an aqueous solution, amphiphilic supramolecular macrocycles are being actively studied for their application in nanomedicine (drug delivery systems, therapeutic and theranostic agents, and others). In this regard, it is important to study their potential toxic effects. Here, the synthesis of amphiphilic calix[4]resorcinarene carboxybetaines and their esters and the study of a number of their microbiological properties are presented: cytotoxic effect on normal and tumor cells and effect on cellular and non-cellular components of blood (hemotoxicity, anti-platelet effect, and anticoagulant activity). Additionally, the interaction of macrocycles with bovine serum albumin as a model plasma protein is estimated by various methods (fluorescence spectroscopy, synchronous fluorescence spectroscopy, circular dichroic spectroscopy, and dynamic light scattering). The results demonstrate the low toxicity of the macrocycles, their anti-platelet effects at the level of acetylsalicylic acid, and weak anticoagulant activity. The study of BSA-macrocycle interactions demonstrates the dependence on macrocycle hydrophilic/hydrophobic group structure; in the case of carboxybetaines, the formation of complexes prevents self-aggregation of BSA molecules in solution. The present study demonstrates new data on potential drug delivery nanosystems based on amphiphilic calix[4]resorcinarenes for their cytotoxicity and effects on blood components.
Collapse
|
4
|
Kuznetsova DA, Kuznetsov DM, Zakharov VM, Zakharova LY. Interaction of Bovine Serum Albumin with Cationic Imidazolium Surfactants Containing a Methoxyphenyl Fragment. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222070143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alzahrani KA, Patel R. Dissociation of the DCF-Hb complex in presence of cationic micelles: A spectroscopic and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Zhiltsova EP, Ibatullina MR, Kuznetsova DA, Gabdrakhmanov DR, Lukashenko SS, Voloshina AD, Sapunova AS, Lenina OA, Faizullin DA, Zuev YF, Ya. Zakharova L. Complexes of 1-alkyl-4-aza-1-azoniabicyclo[2.2.2]octane bromides with lanthanum nitrate: Aggregation and interaction with biomolecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kuznetsova DA, Kuznetsov DM, Vasileva LA, Toropchina AV, Belova DK, Amerhanova SK, Lyubina AP, Voloshina AD, Ya. Zakharova L. Pyrrolidinium surfactants with a biodegradable carbamate fragment: Self-assembling and biomedical application. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
10
|
Kuznetsova DA, Vasileva LA, Gaynanova GA, Pavlov RV, Sapunova AS, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Kuznetsova DA, Gabdrakhmanov DR, Kuznetsov DM, Lukashenko SS, Zakharov VM, Sapunova AS, Amerhanova SK, Lyubina AP, Voloshina AD, Salakhieva DV, Zakharova LY. Polymer-Colloid Complexes Based on Cationic Imidazolium Amphiphile, Polyacrylic Acid and DNA Decamer. Molecules 2021; 26:2363. [PMID: 33921656 PMCID: PMC8072887 DOI: 10.3390/molecules26082363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
The solution behavior and physicochemical characteristics of polymer-colloid complexes based on cationic imidazolium amphiphile with a dodecyl tail (IA-12) and polyacrylic acid (PAA) or DNA decamer (oligonucleotide) were evaluated using tensiometry, conductometry, dynamic and electrophoretic light scattering and fluorescent spectroscopy and microscopy. It has been established that PAA addition to the surfactant system resulted in a ca. 200-fold decrease in the aggregation threshold of IA-12, with the hydrodynamic diameter of complexes ranging within 100-150 nm. Electrostatic forces are assumed to be the main driving force in the formation of IA-12/PAA complexes. Factors influencing the efficacy of the complexation of IA-12 with oligonucleotide were determined. The nonconventional mode of binding with the involvement of hydrophobic interactions and the intercalation mechanism is probably responsible for the IA-12/oligonucleotide complexation, and a minor contribution of electrostatic forces occurred. The latter was supported by zeta potential measurements and the gel electrophoresis technique, which demonstrated the low degree of charge neutralization of the complexes. Importantly, cellular uptake of the IA-12/oligonucleotide complex was confirmed by fluorescence microscopy and flow cytometry data on the example of M-HeLa cells. While single IA-12 samples exhibit roughly similar cytotoxicity, IA-12-oligonucleotide complexes show a selective effect toward M-HeLa cells (IC50 1.1 µM) compared to Chang liver cells (IC50 23.1 µM).
Collapse
Affiliation(s)
- Darya A. Kuznetsova
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Dinar R. Gabdrakhmanov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Denis M. Kuznetsov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Svetlana S. Lukashenko
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Valery M. Zakharov
- Kazan National Research Technological University, Karl Marx str., 68, 420015 Kazan, Russia;
| | - Anastasiia S. Sapunova
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Syumbelya K. Amerhanova
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Anna P. Lyubina
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Alexandra D. Voloshina
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| | - Diana V. Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya St. 18, 420008 Kazan, Russia;
| | - Lucia Ya. Zakharova
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov str. 8, 420088 Kazan, Russia; (D.A.K.); (D.R.G.); (D.M.K.); (S.S.L.); (A.S.S.); (S.K.A.); (A.P.L.); (A.D.V.)
| |
Collapse
|
12
|
Kuznetsova DA, Gabdrakhmanov DR, Gaynanova GA, Vasileva LA, Kuznetsov DM, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Sibgatullina GV, Samigullin DV, Kadirov MK, Petrov KA, Zakharova LY. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Biocompatible supramolecular systems based on novel cationic imidazolium- and urethane-containing amphiphiles: Self-assembly and antimicrobial properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Kuznetsova DA, Gabdrakhmanov DR, Kuznetsov DM, Lukashenko SS, Zakharova LY. Polymer Colloid Complexes Based on an Imidazolium Surfactant and Polyacrylic Acid. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|