1
|
Moosakhani B, Taleb M, Mahmoudi Eshkaftaki Z, Nikfarjam N, Serajian A, Shahsavani MB, Meratan AA. Inhibition of cytotoxic fibril formation of α-synuclein and human insulin by Silymarin from the Silybum marianum. PLoS One 2025; 20:e0320283. [PMID: 40315258 DOI: 10.1371/journal.pone.0320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/17/2025] [Indexed: 05/04/2025] Open
Abstract
Silymarin (SIL), the extract obtained from the seeds of milk thistle (Silybum marianum), contains several flavonolignans with a broad range of therapeutic properties such as antioxidant, anti-inflammatory, and neuroprotective effects. Despite several studies indicating the neuroprotective effects of SIL in relating to neurodegenerative diseases (NDs), there is no report regarding the anti-amyloidogenic activity and the mechanism of action of SIL in vitro. Here, we have extracted SIL from the seeds of milk thistle (SIL A), followed by investigating its potential, in comparison with SIL purchased from Sigma company (SIL B), in modulating fibrillogenesis and cytotoxicity of human insulin and α-synuclein (α-syn) amyloid fibrils. The obtained results indicated the potency of both SIL A and SIL B in inhibiting the assembly process and related cytotoxicity of both proteins but via different mechanisms, including inhibition of amyloid fibrillation with the appearance of short fibrils for human insulin and redirecting the assembly process of α-syn toward the formation of small globular structures. The higher inhibitory effects of SIL B may be attributed to its higher silybin content, which is responsible for the most biological, including anti-amyloidogenic, activities of SIL B. Nanonization increased the capacity of both SILs to inhibit fibrillation and related cytotoxicity of both proteins. Taken together, these results may suggest SIL A as a potent candidate relating to NDs and highlight nanonization as a promising approach to increase its anti-amyloidogenic properties.
Collapse
Affiliation(s)
- Beitollah Moosakhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| | - Mahshid Taleb
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| | - Zahra Mahmoudi Eshkaftaki
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| | - Azam Serajian
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan , Iran
| |
Collapse
|
2
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
3
|
Noorbakhsh Varnosfaderani SM, Sadat Haeri M, Arian AS, Yousefi Rad A, Yazdanpour M, Mojahedian F, Yaghoubzad-Maleki M, Zalpoor H, Baziyar P, Nabi-Afjadi M. Fighting against amyotrophic lateral sclerosis (ALS) with flavonoids: a computational approach to inhibit superoxide dismutase (SOD1) mutant aggregation. J Biomol Struct Dyn 2025; 43:419-436. [PMID: 37975411 DOI: 10.1080/07391102.2023.2281641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Protein aggregation is a biological process that occurs when proteins misfold. Misfolding and aggregation of human superoxide dismutase (hSOD1) cause a neurodegenerative disease called amyotrophic lateral sclerosis (ALS). Among the mutations occurring, targeting the E21K mutation could be a good choice to understand the pathological mechanism of SOD1 in ALS, whereof it significantly reduces life hopefulness in patients. Naturally occurring polyphenolic flavonoids have been suggested as a way to alleviate the amyloidogenic behavior of proteins. In this study, computational tools were used to identify promising flavonoid compounds that effectively inhibit the pathogenic behavior of the E21K mutant. Initial screening identified Pelargonidin, Curcumin, and Silybin as promising leads. Molecular dynamics (MD) simulations showed that the binding of flavonoids to the mutated SOD1 caused changes in the protein stability, hydrophobicity, flexibility, and restoration of lost hydrogen bonds. Secondary structure analysis indicated that the protein destabilization and the increased propensity of β-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Free energy landscape (FEL) analysis was also used to differentiate aggregation, and results showed that Silybin followed by Pelargonidin had the most therapeutic efficacy against the E21K mutant SOD1. Therefore, these flavonoids hold great potential as highly effective inhibitors in mitigating ALS's fatal and insuperable effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Sam Arian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Yazdanpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mojahedian
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| |
Collapse
|
4
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
5
|
Harati M, Tayarani-Najaran Z, Javadi B. Dietary flavonoids: Promising compounds for targeting α-synucleinopathy in Parkinson’s disease. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Aliakbari F, Attar F, Movahedi M, Falahati M. Human tau fibrillization and neurotoxicity in the presence of magnesium oxide nanoparticle fabricated through laser ablation method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121372. [PMID: 35588606 DOI: 10.1016/j.saa.2022.121372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, the acceleratory effect of magnesium oxide nanoparticles (MgO NPs) on the amyloid fibrillization of human tau protein, a major protein involved in the onset of Alzheimer's disease (AD) was investigated. The MgO NPs were fabricated through laser ablation synthesis in solution (LASiS), well-characterized, and explored further for tau aggregation and relevant neurotoxicity by different assays. The results showed that the MgO NPs have a size of around 30 nm, a hydrodynamic radius of 57.09 nm, and a zeta potential of -18.06 mV. The data from ThT and ANS fluorescence-based assays along with circular dichroism (CD) spectroscopy clearly indicated that MgO NPs could significantly promote tau fibrillization, concentration-dependently. Considering the acceleratory effect of MgO NPs against tau fibrillization, cellular assays including cell viability, reactive oxygen species (ROS), and caspase-3 assays indicated that the neurotoxicity of tau amyloid fibrils formed with MgO NPs was higher than that of tau samples aged alone against N2a neuron-like cells. Therefore, it was concluded that the interaction of MgO NPs with tau can lead to acceleration of tau aggregation and underlying neurotoxicity. This study, then can provide useful information about the direct effect of MgO NPs against memory proteins and subsequent adverse effects.
Collapse
Affiliation(s)
- Fakhteh Aliakbari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran.
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Biomedical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Křen V, Valentová K. Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 2022; 39:1264-1281. [PMID: 35510639 DOI: 10.1039/d2np00013j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2015 up to 2022 (Feb)Silymarin, an extract of milk thistle (Silybum marianum) fruits, has been used in various medicinal applications since ancient times. A major component of silymarin is the flavonolignan silybin and its relatives isosilybin, silychristin, silydianin, 2,3-dehydrosilybin, and some others. Except for silydianin, they occur in nature as two stereomers. This review focuses on recent developments in chemistry, biosynthesis, modern advanced analytical methods, and transformations of flavonolignans specifically reflecting their chirality. Recently described chemotypes of S. marianum, but also the newest findings regarding the pharmacokinetics, hepatoprotective, antiviral, neuroprotective, and cardioprotective activity, modulation of endocrine functions, modulation of multidrug resistance, and safety of flavonolignans are discussed. A growing number of studies show that the respective diastereomers of flavonolignans have significantly different activities in anisotropic biological systems. Moreover, it is now clear that flavonolignans do not act as antioxidants in vivo, but as specific ligands of biological targets and therefore their chirality is crucial. Many controversies often arise, mainly due to the non-standard composition of this phytopreparation, the use of various undefined mixtures, the misattribution of silymarin vs. silybin, and also the failure to consider the chemistry of the respective components of silymarin.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| |
Collapse
|
8
|
Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. SOFT MATTER 2022; 18:3278-3290. [PMID: 35437550 DOI: 10.1039/d1sm01704g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human disorders associated with amyloid aggregation, such as Alzheimer's disease and Parkinson's disease, afflict the lives of millions worldwide. When peptides and proteins in the body are converted to amyloids, which have a tendency to aggregate, the toxic oligomers produced during the aggregation process can trigger a range of diseases. Nanoparticles (NPs) have been found to possess surface effects that can modulate the amyloid aggregation process and they have potential application value in the treatment of diseases related to amyloid aggregation and fibrillary tangles. In this review, we discuss recent progress relating to studies of nanoparticles that regulate amyloid aggregation. The review focuses on the factors influencing this regulation, which are important as guidelines for the future design of NPs for the treatment of amyloid aggregation. We describe the characterization methods that have been utilized so far in such studies. This review provides research information and characterization methods for the rational design of NPs, which should result in therapeutic strategies for amyloid diseases.
Collapse
Affiliation(s)
- Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province, Yantai 264025, China
| | - Xinyue Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264000, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
9
|
Hou Y, Gao Y, Wang X, Zhang Y, Li J, Zhang H, Li X. Alginate-aloe vera film contains zinc oxide nanoparticles with high degradability and biocompatibility on post-cesarean wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Jiang P, Gan M, Yen SH, Dickson DW. Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Front Mol Neurosci 2021; 14:738535. [PMID: 34744624 PMCID: PMC8565355 DOI: 10.3389/fnmol.2021.738535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. It is characterized pathologically by the aggregation of α-synuclein (αS) in the form of Lewy bodies and Lewy neurites. A major challenge in PD therapy is poor efficiency of drug delivery to the brain due to the blood-brain barrier (BBB). For this reason, nanomaterials, with significant advantages in drug delivery, have gained attention. On the other hand, recent studies have shown that nanoparticles can promote αS aggregation in salt solution. Therefore, we tested if nanoparticles could have the same effect in cell models. We found that nanoparticle can induce cells to form αS inclusions as shown in immunocytochemistry, and detergent-resistant αS aggregates as shown in biochemical analysis; and nanoparticles of smaller size can induce more αS inclusions. Moreover, the induction of αS inclusions is in part dependent on endolysosomal impairment and the affinity of αS to nanoparticles. More importantly, we found that the abnormally high level of endogenous lysosomotropic biomolecules (e.g., sphingosine), due to impairing the integrity of endolysosomes could be a determinant factor for the susceptibility of cells to nanoparticle-induced αS aggregation; and deletion of GBA1 gene to increase the level of intracellular sphingosine can render cultured cells more susceptible to the formation of αS inclusions in response to nanoparticle treatment. Ultrastructural examination of nanoparticle-treated cells revealed that the induced inclusions contained αS-immunopositive membranous structures, which were also observed in inclusions seeded by αS fibrils. These results suggest caution in the use of nanoparticles in PD therapy. Moreover, this study further supports the role of endolysosomal impairment in PD pathogenesis and suggests a possible mechanism underlying the formation of membrane-associated αS pathology.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Ming Gan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, United States
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
11
|
Yu G, Wang Y, Zhao J. Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson's disease. Biol Chem 2021; 403:253-263. [PMID: 34653323 DOI: 10.1515/hsz-2021-0312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson's disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.
Collapse
Affiliation(s)
- Gege Yu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Yonghui Wang
- Department of Neurosurgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Weifang, Shandong, 262500, China.,Department of Neurosurgery, Qingzhou People's Hospital, Weifang, 262500, China
| | - Jinhua Zhao
- Department of Neurology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
12
|
Pan Q, Ban Y, Xu L. Silibinin-Albumin Nanoparticles: Characterization and Biological Evaluation Against Oxidative Stress-Stimulated Neurotoxicity Associated with Alzheimer's Disease. J Biomed Nanotechnol 2021; 17:1123-1130. [PMID: 34167626 DOI: 10.1166/jbn.2021.3038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is strongly associated with oxidative stress which can damage neural cells. Silibinin has shown potential antioxidative effects. However, due to its low solubility in water, silibinin provides low biological activity and bioavailability. Therefore, to increase its pharmacological effects, silibilin was encapsulated into human serum albumin (HSA) nanoparticles and well-characterized by DLS and TEM techniques. The antioxidant activity of silibinin-HSA nanoparticles was evaluated on LPS-induced oxidative stress in neuron-like cells (SH-SY5Y) through MTT, antioxidant activity and apoptotic assay. It was shown that the mean diameter of HSA and silibinin-HSA nanoparticles were 88 and 105 nm, respectively with a drug loading of 24.08%, drug encapsulation rate of 94.72%, and the yield of silibinin-HSA nanoparticles of around 83.41% and the HSA nano-formulation released silibinin for 15 h. The results displayed that cell viability was reduced by LPS (10 μg/mL), who's also determined to stimulate oxidative stress and apoptosis. However, co-incubation of cells with silibinin (50 μg/mL) or silibinin-HSA nanoparticles led to the recovery of cell viability, activation of SOD and CAT, increase of GSH content, and reduction of ROS level, Caspase-3 activity and fragmentation of DNA. It was also indicated that the neuroprotective and antioxidant activities of silibinin-HAS nanoparticles was greater than free silibinin, indicating that using albumin can be a potential formulation approach for improving the antioxidant efficacy of silibinin.
Collapse
Affiliation(s)
- Qichen Pan
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yunchao Ban
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Lijun Xu
- Jiangxi Provincial Key Laboratory of Molecular Medicine, Nanchang 330006, China
| |
Collapse
|
13
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
14
|
Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer's disease. Int J Biol Macromol 2021; 183:1184-1190. [PMID: 33965487 DOI: 10.1016/j.ijbiomac.2021.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
Aggregation of tau protein into the form of insoluble amyloid fibrils is linked with Alzheimer's disease. The identification of potential small molecules that can inhibit tau protein from undergoing aggregation has received a great deal of interest, recently. In the present study, the possible inhibitory effects of liquiritigenin as a member of chiral flavanone family on tau amyloid fibrils formation and their resulting neurotoxicity were assessed by different biophysical and cellular assays. The inhibitory effect of the liquiritigenin against tau amyloid formation was investigated using thioflavin T (ThT) and 1-Anilino-8-naphthalene sulfonate (ANS) fluorescence spectroscopy, Congo red (CR) binding assays, transmission electron microscopy (TEM) analysis, and circular dichroism (CD) spectroscopy. Neurotoxicity assays were also performed against neuron-like cells (SH-SY5Y) using 3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS), catalase (CAT) and caspase-3 activity measurements. We found that liquiritigenin served as an efficient inhibitor of tau amyloid fibrils formation through prevention of structural transition in tau structure, exposure of hydrophobic patches and their associated neurotoxicity mediated by decrease in the production of ROS and caspase-3 activity and elevation of CAT activity. These data may finally find applications in the development of promising inhibitors against amyloid fibril formation and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xueling Yuan
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
15
|
Antioxidant activity of calycosin against α-synuclein amyloid fibrils-induced oxidative stress in neural-like cells as a model of preventive care studies in Parkinson's disease. Int J Biol Macromol 2021; 182:91-97. [PMID: 33798579 DOI: 10.1016/j.ijbiomac.2021.03.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Protein misfolding and aggregation result in induction of a number of neurodegenerative diseases. In the present study, the anti-fibrillation activity of calycosin and its influence on the amyloid formation of α-synuclein (α-syn) and associated cytotoxicity on neuron-like cells (PC-12) as a model of Parkinson's disease were explored. Therefore, in combination with ThT and ANS fluorescence assay, CD, Congo red absorbance, TEM and cytotoxicity assays (MTT, ROS, SOD activity, CAT activity, GSH content, and caspase-3 activity assays), we showed that calycosin remarkably inhibits α-syn fibril formation through a concentration-dependent manner. The experimental analysis indicated that calycosin exert its antioxidant effects against α-syn amyloid-triggered neurotoxicity by modifying the aggregation pathway toward formation of nontoxic spices via recovering the activity of SOD/CAT and GSH content and reducing the ROS content and caspase-3 activity. This work may provide useful information about the mechanism of α-syn amyloid inhibition by calycosin and pave the way for developing some small molecules-based therapeutic platforms against Parkinson's disease.
Collapse
|
16
|
The concept of protein folding/unfolding and its impacts on human health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021. [PMID: 34090616 DOI: 10.1016/bs.apcsb.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Proteins have evolved in specific 3D structures and play different functions in cells and determine various reactions and pathways. The newly synthesized amino acid chains once depart ribosome must crumple into three-dimensional structures so can be biologically active. This process of protein that makes a functional molecule is called protein folding. The protein folding is both a biological and a physicochemical process that depends on the sequence of it. In fact, this process occurs more complicated and in some cases and in exposure to some molecules like glucose (glycation), mistaken folding leads to amyloid structures and fatal disorders called conformational diseases. Such conditions are detected by the quality control system of the cell and these abnormal proteins undergo renovation or degradation. This scenario takes place by the chaperones, chaperonins, and Ubiquitin-proteasome complex. Understanding of protein folding mechanisms from different views including experimental and computational approaches has revealed some intermediate ensembles such as molten globule and has been subjected to biophysical and molecular biology attempts to know more about prevalent conformational diseases.
Collapse
|
17
|
Zhenxia Z, Min L, Peikui Y, Zikai C, Yaqun L, Junli W, Fenlian Y, Yuzhong Z. Inhibition of tau aggregation and associated cytotoxicity on neuron-like cells by calycosin. Int J Biol Macromol 2020; 171:74-81. [PMID: 33301850 DOI: 10.1016/j.ijbiomac.2020.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/15/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
In this study, the in vitro assembly of tau and anti-amyloidogenic properties of one naturally occurring phytoestrogen, calycosin, was investigated by spectroscopic techniques including ThT and ANS fluorescence, CD, Congo red absorbance as well as TEM analysis. Afterwards the cytotoxicity of different amyloid species against SH-SY5Y cells was evaluated by MTT assay. Fluorescence spectroscopic studies revealed that calycosin exerts its anti-amyloidogenic effects through increasing the lag time and reducing the apparent growth rate constant (kapp), the amount of fibrillation, and the exposure of hydrophobic regions. Congo red absorbance and CD studies indicated that calycosin prevented the formation of tau aggregate species and β-sheets structures, respectively. TEM analysis also determined the capacity of calycosin to inhibit tau fibrillogenesis through formation of large amorphous aggregates. Furthermore, cellular assays disclosed that calycosin mitigated the cell mortality, LDH release, ROS level, and expression of Bax, Bcl-2, and Caspase-3 in both mRNA and protein levels induced by tau amyloid fibrils. In conclusion, this data may suggest that calycosin can prevent tau amyloid fibrillation and the associated cytotoxicity, mainly due to its effects on formation of lower content of oligomeric and fibrillar aggregates with lower solvent-exposed hydrophobic patches compared to those produced in the absence of calycosin.
Collapse
Affiliation(s)
- Zhang Zhenxia
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Lin Min
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Yang Peikui
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Chen Zikai
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Liu Yaqun
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China
| | - Wang Junli
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise 533000, Guangxi, China
| | - Yang Fenlian
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Zheng Yuzhong
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, Guangdong, China.
| |
Collapse
|