1
|
Rashid R, Shafiq I, Gilani MRHS, Maaz M, Akhter P, Hussain M, Jeong KE, Kwon EE, Bae S, Park YK. Advancements in TiO 2-based photocatalysis for environmental remediation: Strategies for enhancing visible-light-driven activity. CHEMOSPHERE 2024; 349:140703. [PMID: 37992908 DOI: 10.1016/j.chemosphere.2023.140703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Researchers have focused on efficient techniques for degrading hazardous organic pollutants due to their negative impacts on ecological systems, necessitating immediate remediation. Specifically, TiO2-based photocatalysts, a wide-bandgap semiconductor material, have been extensively studied for their application in environmental remediation. However, the extensive band gap energy and speedy reattachment of electron (e-) and hole (h+) pairs in bare TiO2 are considered major disadvantages for photocatalysis. This review extensively focuses on the combination of semiconducting photocatalysts for commercial outcomes to develop efficient heterojunctions with high photocatalytic activity by minimizing the e-/h+ recombination rate. The improved activity of these heterojunctions is due to their greater surface area, rich active sites, narrow band gap, and high light-harvesting tendency. In this context, strategies for increasing visible light activity, including doping with metals and non-metals, surface modifications, morphology control, composite formation, heterojunction formation, bandgap engineering, surface plasmon resonance, and optimizing reaction conditions are discussed. Furthermore, this review critically assesses the latest developments in TiO2 photocatalysts for the efficient decomposition of various organic contaminants from wastewater, such as pharmaceutical waste, dyes, pesticides, aromatic hydrocarbons, and halo compounds. This review implies that doping is an effective, economical, and simple process for TiO2 nanostructures and that a heterogeneous photocatalytic mechanism is an eco-friendly substitute for the removal of various pollutants. This review provides valuable insights for researchers involved in the development of efficient photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Ruhma Rashid
- Institute of Chemical Science, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | | | - Muhammad Maaz
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Kwang-Eun Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungjun Bae
- Department of Civil & Environmental Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Gnanasekaran L, Chen WH, Soto-Moscoso M. Highly operative NiO/ZnO nanocomposites for photocatalytic removal of azo dye. CHEMOSPHERE 2022; 308:136528. [PMID: 36165839 DOI: 10.1016/j.chemosphere.2022.136528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The far-reaching technology of semiconductors in treating water pollutants reduces serious health hazards to humans and other eco-systems. With this interpretation, this work is attempted for the first time to synthesize nanosized pristine NiO and ZnO materials, and NiO/ZnO (70:30, 50:50) composites by co-precipitation method. The synthesized materials were then portrayed for their properties using various instrumental techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectrum (EDXS), Fourier transform Infrared spectrum (FT-IR). The main approach of this work is connected with the ultra violet (UV) photocatalytic degradation of MO (methyl orange) by employing the synthesized nanomaterials as catalysts. In view of results, the photocatalytic degradation of NiO/ZnO (70:30) has reported the greatest efficiency than the other catalysts. This outcome lies with the consideration of higher content of NiO present in the composite than ZnO. Further, there was the existence of higher surface area analysed from the BET result. Also, the NiO/ZnO (50:50) sample showed lower degradation efficiency in terms of formed agglomeration when surveyed through TEM. Besides, the positive mechanism of photocatalysis reaction forms the essential hydroxyl radicals which correspond to MO degradation. Moreover, the highly efficient NiO/ZnO (70:30) sample has been trialled for photocatalytic repetition process to observe the stability of degradation. It has accounted with good efficiency for 5 repeated cycles. Finally for UV degradation, the recognized photocatalytic aspect was due to the surface morphology enhanced surface area, synergistic effects of metal oxides and electron-hole charge separation.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | | |
Collapse
|
3
|
Gnanasekaran L, Priya AK, Vasseghian Y, Ansar S, Soto-Moscoso M. Existence of Ti 3+ and dislocation on nanoporous CdO-TiO 2 heterostructure applicable for degrading chlorophenol pollutant. ENVIRONMENTAL RESEARCH 2022; 214:113889. [PMID: 35843276 DOI: 10.1016/j.envres.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
This study addresses the significance of wastewater recuperation by a simple and facile treatment process known as photocatalyst technology using visible light. Titanium di-oxide (TiO2) is the most promising photocatalyst ever since longing decades, has good activity under UV light, owing to its small band gap. Hence, TiO2 has been modified with metal oxides for the positive response against visible light. Since this is an efficient process, the novelty has been made on nanometal oxide CdO (cadmium oxide) combined with TiO2 to acquire the best efficiency of degrading organic chlorophenol contaminant. Initially, the composites were synthesized by sol-gel and thermal decomposition methods and investigated for their various outstanding properties. The characterized outcomes have exhibited heterostructures with reduced crystallite size from the X-ray diffraction studies. Then, the determination of nanoporous feature was recognized through HR-TEM analysis which was also detected with some dislocations. The EDX spectrum was identified the perfect elemental composition. The nitrogen adsorption-desorption equilibrium was attained that offers many pores measured with high surface area. The XPS result convinced that Ti3+ was accessible along with TIO2/CdO composite. Further the absorption towards higher wavelength was obtained from UV-vis spectra. Finally, for the photocatalytic application of chlorophenol, the composite shows higher percentage of degrading efficiencies than the pristine TiO2. The photocatalytic mechanism was discussed in detail.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
4
|
Shaikh G, Nilegave DS, Girawale SS, Kore KB, Newaskar SR, Sahu SA, Funde AM. Structural, Optical, Photoelectrochemical, and Electronic Properties of the Photocathode CuS and the Efficient CuS/CdS Heterojunction. ACS OMEGA 2022; 7:30233-30240. [PMID: 36061733 PMCID: PMC9434620 DOI: 10.1021/acsomega.2c03352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 05/26/2023]
Abstract
We report a facile synthesis of CuS and CdS nanoparticles using a cheap solution-processed chemical bath method forming heterogeneous nucleation. The optical, structural, photoelectrochemical (PEC), and electronic properties are studied by implementing relevant experimental techniques. The estimated optical band gap of ∼2.10 eV of CuS designates potential application in inexpensive photocatalysis and solar cells. Further, the valence band and conduction band positions of CuS and CdS are evaluated using cyclic voltammetry curves. Narrow conduction and valence band offset potentials measured at the CuS/CdS heterojunction are encouraging factors for the PEC application. The electronic properties are supported by the current density vs potential plots (J-V) with an improved short-circuit current density of 0.71 mA cm-2 for the heterojunction compared to bare CuS showing 0.15 μA cm-2. The determined PCE of the heterojunction CuS/CdS is 0.65%.
Collapse
Affiliation(s)
- Gulistan
Y. Shaikh
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
| | - Dhanaraj S. Nilegave
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
| | - Swapnil S. Girawale
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
| | - Kiran B. Kore
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Shivkumar R Newaskar
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
- Department
of Physics, Savitribai Phule Pune University, Pune 411007, India
| | - Shrishreshtha A. Sahu
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
| | - Adinath M. Funde
- Centre
for Energy Studies (formerly School of Energy Studies), Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
5
|
Gnanasekaran L, Pachaiappan R, Kumar PS, Hoang TKA, Rajendran S, Durgalakshmi D, Soto-Moscoso M, Cornejo-Ponce L, Gracia F. Visible light driven exotic p (CuO) - n (TiO 2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117304. [PMID: 34015669 DOI: 10.1016/j.envpol.2021.117304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO2) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO2 need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO2 nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) - n (TiO2) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV-Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO2 catalyst towards improving or eliminating the existing various environmental damages.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - D Durgalakshmi
- Department of Medical Physics, CEG Campus, Anna University, Chennai, 600 025, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad Del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - F Gracia
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, 6th Floor, Santiago, Chile
| |
Collapse
|
6
|
Rajendran S, Pachaiappan R, Hoang TKA, Karthikeyan S, Gnanasekaran L, Vadivel S, Soto-Moscoso M, Gracia-Pinilla MA. CuO-ZnO-PANI a lethal p-n-p combination in degradation of 4-chlorophenol under visible light. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125989. [PMID: 34492886 DOI: 10.1016/j.jhazmat.2021.125989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
Recent interest and responsibility to retain the water resources rose among people. Scientists have been engaged to develop the mechanism that involves the freely available sunlight - a sustainable resource - to remove the pollutants from water to make it again suitable for life. Ample research was reported in the removal of dye pollutants present in water. For this they have utilized p type and n type semiconductors or combination of both (p-n type) under the excitation of a wide range of electromagnetic band energy. Most of the interest lies in emerging out of the mechanism with hybrid semiconductors to remove the previously reported flaws. Toward this regard, this manuscript aims to develop unique material using the underlying p-n-p model for harnessing visible light in catalysis. Initially, p-n structure was developed with copper oxide (p-type) and zinc oxide (n-type), then polyaniline (p-type) conjugated at different concentrations (0.5 M, 0.7 M & 1.0 M), to yield p-n-p models, using precipitation followed by sonication techniques. Detailed physicochemical investigations were conducted on the resultant p-n-p material to elucidate its characteristics. Furthermore, the mechanism was advocated for the best photocatalytic activity under visible light excitation for the degradation of 4-chlorophenol and compared with the performance of a standard p-n (CuO/ZnO) combination.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile.
| | - Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai 600086, Tamilnadu, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | - Sekar Karthikeyan
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Lalitha Gnanasekaran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775 Arica, Chile
| | - S Vadivel
- Department of Chemistry, PSG College of Technology, Coimbatore 641004, India
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-bío, Avenida Collao 1202, Casilla 15-C, Concepción, Chile
| | - M A Gracia-Pinilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico-Matemáticas, Av. Universidad, Cd. Universitaria, San Nicolás de los Garza, NL, Mexico; Universidad Autónoma de Nuevo León, Centro de Investigación en Innovación y Desarrollo en Ingeniería y Tecnología, PIIT, Apodaca, NL, Mexico
| |
Collapse
|