1
|
Fu L, Liu Y, Guo J, Zhang X, Li W, Zhao J, Zhen Z, Chen Y. Enthalpy-Driven Interaction between Bovine Serum Albumin and Biomass-Derived Low-Melting Mixture Solvents (LoMMSs) for Efficient and Green Purification of Protein. Biomacromolecules 2025; 26:1274-1282. [PMID: 39781920 DOI: 10.1021/acs.biomac.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs. Here, we for the first time find that eco-friendly biomass-derived LoMMSs could be potentially used for the efficient and green purification of BSA protein by enthalpy-driven interactions. Biomass-derived LoMMSs possess the merits of high biocompatibility, high degradability, high abundance, and low cost. A single high-affinity binding site via hydrogen bonding and van der Waals forces is observed between BSA and LoMMSs by fluorescence and thermodynamic analysis. Experimental results from circular dichroism and infrared spectra demonstrate that the addition of LoMMSs stabilizes the secondary structure of the BSA protein. This work provides a valuable indication for the design of eco-friendly and cost-effective LoMMSs for the purification of protein.
Collapse
Affiliation(s)
- Li Fu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Ya Liu
- Department of Pharmacy, Langfang Health Vocational College, Langfang, Hebei 065001, P.R. China
| | - Jingjing Guo
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Xueqing Zhang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Wenqiang Li
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Jiayue Zhao
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Ziying Zhen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| | - Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China
| |
Collapse
|
2
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Guimarães TG, Andrade DF, Santana AP, Moser P, Ferreira SS, Menezes IM, Amaral CD, Oliveira A, Gonzalez MH. Mixture design and physicochemical characterization of amino acid-based DEEP eutectic solvents (AADES) for sample preparation prior to elemental analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Guzik MW. Polyhydroxyalkanoates, bacterially synthesized polymers, as a source of chemical compounds for the synthesis of advanced materials and bioactive molecules. Appl Microbiol Biotechnol 2021; 105:7555-7566. [PMID: 34536102 PMCID: PMC8502142 DOI: 10.1007/s00253-021-11589-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Research into polyhydroxyalkanoates (PHAs) is growing exponentially. These bacterially derived polyesters offer a spectrum of possible applications, such as in manufacturing of daily-use objects, production of medical devices and implantable objects, or as synthons in chemical and pharmaceutical industries. Thanks to their broad physicochemical features, PHAs can be seen as polymers of the future, which can replace traditional petrochemical equivalents. As they are synthesized by bacteria through fermentation processes, these polyesters can be obtained from virtually any carbon source in a sustainable manner. Characterized by biodegradability and biocompatibility, they are used in many industries, ranging from production of everyday objects to medical applications. Furthermore, as they are built from bioactive monomers, namely (R)-3-hydroxyacids, they provide a platform for the synthesis of advanced chemical compounds. In this mini review, the reader will be acquainted with recent studies conducted at the Jerzy Haber Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences in collaboration with other groups that have contributed to the development of PHA-based medical materials, bioactive molecules and novel green solvents derived from PHA monomers.Key points• Polyhydroxyalkanoates are emerging polymers for biomedical applications• Polyhydroxyalkanoates can be modified easily to provide novel materials• (R)-3-Hydroxyacids are good synthons for bioactive substances and green solvents.
Collapse
Affiliation(s)
- Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| |
Collapse
|