1
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
2
|
Chen Z, Zhang X, Xu K, He X, Li J, Zhang L, Wang G. Facile fabrication of nanocellulose-supported membrane composited with modified carbon nitride and HKUST-1 for efficient photocatalytic degradation of formaldehyde. Int J Biol Macromol 2024; 268:131937. [PMID: 38685539 DOI: 10.1016/j.ijbiomac.2024.131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
As a cellulose-derived material, nanocellulose possesses unique properties that make it an ideal substrate for various functional composite materials. In this study, we developed a novel composite membrane material capable of adsorbing and photo-catalyzing formaldehyde by immobilizing HKUST-1 (copper open framework composed of 1,3,5-benzenetricarboxylic acid) onto NFC (Nano-fibrillated cellulose) membranes and subsequently loading modified carbon nitride. The synthesized CNx@HN composite membrane (consisting of NFC membrane with anchored HKUST-1 and modified g-C3Nx nanosheets) was thoroughly characterized, and its photocatalytic degradation performance towards low concentrations of formaldehyde (3.0 mg/m3) was investigated. The results demonstrated that HKUST-1's porous nature exhibited a concentrated adsorption capacity for formaldehyde, while the modified CNx (Modified g-C3Nx nanosheets) displayed robust photocatalytic degradation of formaldehyde. The synergistic effect of HKUST-1 and modified CNx on the NFC membrane significantly enhanced the efficiency of formaldehyde degradation. Under xenon lamp irradiation, CNx@HN-5 achieved a total removal efficiency of 86.9 % for formaldehyde, with a photocatalytic degradation efficiency of 48.45 %, showcasing its exceptional ability in both adsorption and photocatalytic degradation of formaldehyde. Furthermore, after 10 cycles of recycling, the composite membrane exhibited excellent stability for the photocatalytic degradation process. Therefore, this study presents a green and facile strategy to fabricate nanocellulose-supported composite membranes with great potential for practical applications in formaldehyde degradation.
Collapse
Affiliation(s)
- Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xuefeng Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Kai Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Xiangyang He
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China
| | - Junkai Li
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin Province 132012, China.
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Zhou C, Chen Z, Lv G, Xu C, Wang G, Zhang S, Yang Z, Cheng Z, Cai J, Li T, Pu Y, Pu Z, Qi X, Xiao G, Xu X. Optimization of the adsorption performance of herbal residues as lanthanide ion-modified carriers for phosphate by fly ash and its application. CHEMOSPHERE 2024; 348:140704. [PMID: 37979805 DOI: 10.1016/j.chemosphere.2023.140704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
In order to mitigate the harmful effects of eutrophication in water bodies, the applications of lanthanum-modified materials for phosphate removal from wastewater have attracted much attention. Unlike conventional adsorbents, plant wastes usually have poor adsorption abilities and are difficult to be reused for desorption of phosphate due to their small pore sizes and ununiform loading of modified ions. In this paper, a composite adsorbent (LC-MM) was synthesized by hydrothermal treatment of waste traditional Chinese medical materials (MMs) with load of lanthanum carbonate and co-heating treatment with coal fly ash (CFA), which was applied to remove phosphate from water. The results showed that maximum adsorption capacity of LC-MM was 52 mg g-1, and the LC-MM showed appreciable adsorption capacity of phosphate for agricultural wastewater in the presence of complex interfering ions and for urban surface waters with low phosphate concentrations. Five adsorption-desorption cycles showed good reusability. The mechanism study showed that the La3+ ions were more uniformly distributed on the surface of the absorbents with the introduction of Fe3+, Al3+, Mg2+ and Ca2+ ions in CFA. The ligand exchange between phosphate and carbonate, the internal spherical complexation formed by lanthanum ion and phosphate, and surface chemical precipitation attachment are the main reasons why the adsorption capacity of LC-MM approached or even surpassed that of conventional lanthanum-modified adsorbents. In conclusions, this work proposed an effective method for the modification of plant materials.
Collapse
Affiliation(s)
- Caigao Zhou
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zihan Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guochun Lv
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changlian Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, PR China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu, 611130, PR China
| | - Zhang Cheng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xin Qi
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guangli Xiao
- Sichuan Keyuan Engineering Technology Testing Center Co., LTD, Chengdu, 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
4
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: 10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
5
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: https:/doi.org/10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
|
6
|
Dong S, Li X, Wang S, Zhang D, Chen Y, Xiao F, Wang Y. Adsorption-electrochemical mediated precipitation for phosphorus recovery from sludge filter wastewater with a lanthanum-modified cellulose sponge filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165545. [PMID: 37454846 DOI: 10.1016/j.scitotenv.2023.165545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, the sludge filter wastewater is confirmed to investigate the effects of adsorption-electrochemical mediated precipitation (EMP) driven phosphorus recovery on the basis of lanthanum-modified cellulose sponge filter (LCLM) material. The adsorption-EMP method relies on in situ recovery phosphate (P) from the used desorption agent (NaOH-NaCl binary solution) via the formation of Ca5(PO4)3OH all while preserving the alkalinity of the desorption agents which benefited long-term application. The lanthanum content of LCLM was 9.0 mg/g, and the adsorption capacity reached 226.1 ± 15.2 mg P/g La at an equilibrium concentration of 3.9 mg P/L. After adsorption, 55.7 % of P was recovered, and the corresponding alkalinity increased from 1.9 mmol/L to 2.2 mmol/L. Adsorption mechanism analysis revealed that the high lanthanum usage of LCLM was attributed to the synergistic effect of the lattice oxygen of LaO and LaPO4·0.5H2O crystallite formation. Additionally, the Ca5(PO4)3OH was found precipitated in the precipitation in the cathode chamber (P-CC) rather than on the surface/section of cation exchange membrane (CEM) and cathode indicating that the P recovery process was controlled by the saturation of CaP species in the EMP system and the electromigration effect. These findings present a new strategy to promote the effective utilization of rare earth elements for P adsorption and demonstrate the potential application of adsorption-EMP systems in dephosphorization for wastewater treatment.
Collapse
Affiliation(s)
- Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Yuchi Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Feng Xiao
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Zhang X, Mai Y, Xian X, Hu L, Huang J, Yuan H, Lin X. Adsorption and Removal of Phosphate from Wastewater Using Lignin-Based Adsorbent Modified with Lanthanide: Characterization, Performance, and Mechanisms. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaodong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Yinglin Mai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Xiaoling Xian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Lei Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Jiale Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Haotian Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu
District, Guangzhou510006, People’s Republic of China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou510006, People’s Republic of China
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong University of Technology, Guangzhou510006, People’s Republic of China
| |
Collapse
|
8
|
Zhao Y, Yang H, Xia S, Wu Z. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: effect of carbonization temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57773-57789. [PMID: 35352229 DOI: 10.1007/s11356-022-19870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Thalia dealbata Fraser-derived biochar was prepared at different carbonization temperatures to remove nutrients in aqueous solution. Thermogravimetry/differential thermogravimetry (TG/DTG) was used to analyze the carbonization and decomposition procedure of Thalia dealbata Fraser. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential, and N2 adsorption-desorption isotherms were employed to characterize the prepared biochar. The carbonization temperature obviously effected the physical and chemical properties of biochar. The adsorption efficiency of ammonia (NH4+-N), nitrate (NO3--N), and phosphate (PO43-) adsorption on biochar was tested. Pseudo-first-order kinetic, pseudo-second-order kinetic, and intra-particle diffusion kinetic models were used to fit adsorption kinetic. Langmuir and Freundlich models were used to fit adsorption isotherms. The theoretical adsorption capacity of NH4+-N, NO3--N, and PO43- on biochar was 5.8 mg/g, 3.8 mg/g, and 1.3 mg/g, respectively. This study provides the insights for effect of carbonization temperature on biochar preparation and application.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Hang Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Chen L, Jiang Y, Yang X, Dai J, Dai X, Dong M, Yan Y. Salt sacrificial template strategy and in-situ growth of lamellar La(OH)3 on a novel PVDF foam for the simultaneous removal of phosphates and oil pollution without VOCs emission. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Li H, Wang L, Wei Y, Yan W, Feng J. Preparation of Templated Materials and Their Application to Typical Pollutants in Wastewater: A Review. Front Chem 2022; 10:882876. [PMID: 35480393 PMCID: PMC9037039 DOI: 10.3389/fchem.2022.882876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
As the pollution and destruction of global water resources become more and more severe, the treatment of wastewater has attracted significant attention. The template method is a synthetic method in which the template is the main configuration to control, influence, and modify the morphology as well as control the dimensions of the material, thus achieving the properties that determine the material. It is simple, highly reproducible, and predictable, and more importantly, it can effectively control the pore structure, size, and morphology of the material, providing a novel platform for the preparation of adsorbent materials with excellent adsorption properties. This review focuses on the classification of the templates according to their properties and spatial domain-limiting capabilities, reviews the types of hard and soft template materials and their synthetic routes, and further discusses the modulation of the morphological structure of the materials by the introduction of templates. In addition, the application and adsorption mechanisms of heavy metal ions and dyes are reviewed based on the regulatory behavior of the template method.
Collapse
|
11
|
Yuan J, Zhu Y, Wang J, Gan L, He M, Zhang T, Li P, Qiu F. Preparation and application of Mg–Al composite oxide/coconut shell carbon fiber for effective removal of phosphorus from domestic sewage. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|