1
|
Nagarajan V, Reseeka N, Chandiramouli R. Hex-star phosphorene nanosheets as sequencing material for DNA/RNA strands - A first-principles investigation. J Mol Graph Model 2024; 132:108845. [PMID: 39142259 DOI: 10.1016/j.jmgm.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this study, we utilised hex-star phosphorene as the main detecting material to identify the nucleobases. Nucleobases, being crucial carriers of hereditary information are identified through specific hydrogen bonding and steric interactions such as adenine pairing with thymine (or) uracil and guanine pairing with cytosine. The stable hex-star phosphorene possesses negative formation energy of -5.194 eV. The hex-star phosphorene exhibits a semiconductor nature with an energy band gap of 1.658 eV, which is deployed as the adsorbing substrate for nucleobases. Based on the Mulliken charge analysis, adsorption energy, relative band gap variation, and the detection efficiency of hex-star phosphorene towards nucleobases are examined. The outcome confirms the physisorption of nucleobases on hex-star phosphorene and strongly supports that hex-star phosphorene can be used as sequencing material for DNA and RNA.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India
| | - N Reseeka
- School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur -613 401, India.
| |
Collapse
|
2
|
Muralidharan A, Subramani D, Arumugam D, Beena SP, Ramasamy S. Exploring the fascinating interplay of epigenetically modified DNA bases with two dimensional bare and P-doped Si 2BN and BN sheets for biosensing applications: A compelling DFT perspective. Int J Biol Macromol 2024; 282:137032. [PMID: 39486745 DOI: 10.1016/j.ijbiomac.2024.137032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Detecting epigenetically modified (EM) bases is crucial for disease detection, biosensing, and DNA sequencing. Two-dimensional P-doped Si2BN and BN sheets are used as sensing substrates in density functional theory (DFT) studies. Both the sheets are doped with a phosphorous atom at various atomic sites to examine the sheet's potential in detecting 5-hydroxymethylcytosine (5hmc), 5-methylcytosine (5mc), 7-methylguanine (7mg) and 8-oxoguanine (8oxg) bases. Doping of the P atom in the Si2BN sheet improves the adsorption energy (Ead) of Ab+5hmc (-107.16 kcal/mol) and Ab+5mc (-78.36 kcal/mol), As+7mg (-84.31 kcal/mol) in the gas and aqueous phase Ab+5hmc (-93.28 kcal/mol), An+7mg (-78.92 kcal/mol) and As+5mc (-77.52 kcal/mol) respectively. Standard deviation (θ) indicates that As complexes have high θ values ranging from 4.55 to 37.77, suggesting a high likelihood of distinguishing the bases. The P-doped BN complexes exhibit noticeable work functional shifting (Δϕ%) recommended that they can be used as ϕ-based sensors. Time-dependent DFT results suggest that when EM bases interact with P-doped Si2BN complexes, significant blue shifts (hypsochromic) and red shifts (bathochromic) are observed in the visible and near-infrared spectrum. Hence, the above finding suggests that P-doped Si2BN sheets are highly effective for sensing EM bases and are recommended for DNA/RNA sequencing applications.
Collapse
Affiliation(s)
- Akilesh Muralidharan
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Divyakaaviri Subramani
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Deepak Arumugam
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Shamini Pazhani Beena
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Shankar Ramasamy
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India.
| |
Collapse
|
3
|
Zhang Y, Qin C, Zhu L, Wang Y, Cao J. Adsorption of NO 2, NO, NH 3, and CO on Noble Metal (Rh, Pd, Ag, Ir, Pt, Au)-Modified Hexagonal Boron Nitride Monolayers: A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1058-1071. [PMID: 38146207 DOI: 10.1021/acs.langmuir.3c03282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
To investigate the application of modified hexagonal boron nitride (h-BN) in the detection and monitoring of harmful gases (NO2, NO, NH3, and CO), first-principles calculations are applied to study the geometric structure and electronic behavior of the adsorption system. In this paper, the four adsorption sites, namely, B, N, bridge, and hollow sites, are considered to explore the stable adsorption structure of metals (M = Rh, Pd, Ag, Ir, Pt, and Au) on the BN surface. The calculation results demonstrate that the geometric structures of metal at the N-site are relatively stable. Subsequently, the different adsorption structures of NO2, NO, NH3, and CO on M-BN are researched. The electron transfer, charge difference density, and work function of the stable adsorption structure are calculated. The results show that NO2, NO, and CO have the strongest adsorption capacity in the Ir-BN system, with adsorption energies of -2.705, -5.064, and -3.757 eV, respectively. The Pt-BN system has an excellent adsorption performance (-2.251 eV) for NH3. Compared with the M-BN system, the work function of the adsorption system increases after adsorbing NO2, while it decreases after adsorbing NH3. This work shows that h-BN with metal modification is a potential material for online monitoring of harmful gases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
4
|
Nagarajan V, Vaishnavi M, Bhuvaneswari R, Chandiramouli R. Novel chair graphene nanotubes as adsorbing medium for alanine and asparagine amino acids - A DFT outlook. J Mol Graph Model 2024; 126:108637. [PMID: 37801810 DOI: 10.1016/j.jmgm.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Amino acids are required to make protein. The deficiency of amino acids leads to a lack of sleep and mood. Among various amino acids, we conducted the adsorption studies of alanine and asparagine amino acids on a novel one-dimensional material, chair graphene nanotube. The stability of the chair graphene nanotube is ensured with the negative formation energy, which is -6.490 eV/atom. The energy band gap of bare chair graphene nanotube is 1.022 eV, which possesses a semiconductor nature. The stable chair graphene nanotube is used as adsorbing material for alanine and asparagine amino acids. Besides, alanine and asparagine are physisorbed on chair graphene nanotubes that are confirmed by the range of adsorption energy from -0.107 eV to -0.718 eV. Upon adsorption of amino acids, the charge transfer outcome shows that chair graphene nanotubes behave as donors of electrons to alanine and asparagine. Further, the changes in the band gap of the chair graphene nanotube are noticed from the results of band structure and PDOS spectrum. The changes in the electron density also reveal the changes in the electronic properties of the chair graphene nanotube owing to alanine and asparagine sorption. The proposed report portrays the adsorption attributes of alanine and asparagine amino acids on 1D chair graphene nanotubes.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - M Vaishnavi
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
5
|
Li H, Ran H, Zhang Y, Yin J, Zhang J, He J, Jiang W, Zhu L, Li H. Atomically Dispersed Aluminum Sites in Hexagonal Boron Nitride Nanofibers for Boosting Adsorptive Desulfurization Performance. Inorg Chem 2023; 62:17883-17893. [PMID: 37842934 DOI: 10.1021/acs.inorgchem.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The exploitation of highly efficient and cost-effective selective adsorbents for adsorptive desulfurization (ADS) remains a challenge. Fortunately, single-atom adsorbents (SAAs) characterized by maximized atom utilization and atomically dispersed adsorption sites have great potential to solve this problem as an emerging class of adsorption materials. Herein, aiming at improving the efficiency of ADS performance via the economical and feasible strategy, the desirable SAAs have been fabricated by uniformly anchoring aluminum (Al) atoms on hexagonal boron nitride nanofibers (BNNF) via an in situ pyrolysis method. Remarkably, Al-BN-1.0 exhibited a superior adsorption capacity of 46.1 mg S/g adsorbent for dibenzothiophene, with a 45% increase in adsorption capacity compared to the pristine BNNF. Additionally, it demonstrated excellent adsorption of other thiophene sulfides. Moreover, the ADS mechanisms have been investigated through special adsorption experiments combined with density functional theory (DFT) calculations. It was demonstrated that the superior ADS performance and selectivity of Al-BN-1.0 originate from the sulfur-aluminum (S-Al) and π-π interactions cooperating synergistically. This work would cast light on a novel fabrication strategy for the SAAs based on the two-dimensional material with a tunable metal site configurations and densities for varied selective adsorption and separation.
Collapse
Affiliation(s)
- Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuan Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jie Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jinrui Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing He
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wei Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Hainan Normal University, Haikou 571158, P. R. China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
6
|
Nagarajan V, Bhuvaneswari R, Chandiramouli R. Interaction studies of propylene and butadiene on tricycle graphane nanosheet - A DFT outlook. J Mol Graph Model 2023; 121:108449. [PMID: 36965229 DOI: 10.1016/j.jmgm.2023.108449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
In this research work, we employed a tricycle graphane nanosheet as a chemical sensor to monitor the toxic hydrocarbon molecules, namely propylene, and 1,3-butadiene, which are emitted from automobile industries. At first, the structural stability and dynamical permanency of tricycle graphane is ascertained based on cohesive energy and phonon-band-spectrum. Sequentially, the electronic properties of tricycle graphane are conferred with the results of the projected density of states spectrum and band structure. The computed band gap of tricycle graphane is 5.53 eV. Chiefly, the adsorption behaviour of target propylene and 1, 3-butadiene on tricycle graphane is explored by determining adsorption energy, relative band gap variation, and Mulliken population analysis. Furthermore, the range of adsorption energy magnitudes (-0.16 eV to -1.03 eV) demonstrates that the target hydrocarbon molecules are physically adsorbed on tricycle graphane material. The overall outcome endorses that the tricycle graphane can be utilised as a prominent sensor to sense the hydrocarbon molecules released from automobiles and monitor air pollutants.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
7
|
Ran H, Yin J, Zhang J, Zhang Y, He J, Lv N, Li H, Li H. Group IIIA Single-Metal Atoms Anchored on Hexagonal Boron Nitride for Selective Adsorption Desulfurization via S-M Bonds. Inorg Chem 2023; 62:4883-4893. [PMID: 36912429 DOI: 10.1021/acs.inorgchem.2c04228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Single-atom adsorbents (SAAs) featuring maximized atom utilization and uniform isolated adsorption sites have aroused extensive research interest in recent years as a novel class of adsorption materials research. Nevertheless, it is still challenging to gain a fundamental understanding of the complicated behaviors of SAAs for adsorbing thiophenic compounds (THs). Herein, this work systematically investigated the mechanisms of adsorption desulfurization (ADS) over a single group IIIA metal atom (Ga, In, and Tl) anchored on hexagonal boron nitride nanosheets (BNNSs) via density functional theory (DFT) calculations. First, all the possible doping sites have been considered and their stabilities have been evaluated by the doped energy. DFT calculations reveal that metal atoms prefer to substitute B atoms on BNNSs rather than N atoms. Additionally, SAAs all exhibit considerably enhanced adsorption capacity for THs primarily by the sulfur-metal (S-M) bond with π-π interactions maintained. Among them, In-atom-based SAAs would be adequate to provide the highest adsorption energy (In_cen_B, -40.1 kcal mol-1). Furthermore, from the perspective of adsorption energy, the SAAs show superior selectivity to THs than aromatic compounds due to the newly formed S-M bond. We hope that our work will manifest the design and application of SAAs in the field of ADS and shed light on a new strategy for fabricating SAAs based on BNNSs.
Collapse
Affiliation(s)
- Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jie Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jinrui Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuan Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing He
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Naixia Lv
- College of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China
| | - Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
8
|
Palomino-Asencio L, Chigo-Anota E, García-Hernández E. Insights on α-Glucose Biosensors/Carriers Based on Boron-Nitride Nanomaterials from an Atomistic and Electronic Point of View. Chemphyschem 2022; 23:e202200310. [PMID: 35945140 DOI: 10.1002/cphc.202200310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/08/2022] [Indexed: 01/04/2023]
Abstract
The interaction of α-glucose with a BN-nanosheet, BN-nanotube, and BN-fullerene, was analyzed from an atomistic and electronic point of view, to evaluate such nanostructures as possible carriers and/or biosensors of the α-glucose molecule. Adsorption energies are in the range of physisorption (-0.79 eV to -0.91 eV) for the BN-nanosheet and -nanotube, and chemisorption (-2.24 eV to -2.35 eV), for the BN-fullerene. All systems, exhibit semiconductor-like behavior and great stability according to |LUMO-HOMO| energy gap [GapLH ] and chemical potential values, respectively. For the BN-nanosheet and -nanotube, the stabilization of the complexes is through hydrogen bonds, while for BN-fullerene is through a covalent bond and charge transfer. Furthermore, the BN-fullerene is able to dissociate the α-glucose molecule, which could help to decomposer such a compound, and be used for biological applications. The data taking into consideration solvent effects have no significant impact with respect to gas phase, except in the dipole moment (Md ) where we noticed an increase up to ∼45 %. Our results suggest that BN-nanosheet and -nanotube, may act as biosensors, while BN-fullerene, may serve as a carrier or degrader of the α-glucose molecule.
Collapse
Affiliation(s)
- Luz Palomino-Asencio
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, México
| | - Ernesto Chigo-Anota
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, México
| | - Erwin García-Hernández
- División de Mecatrónica, Subdirección de Posgrado e Investigación, Tecnológico Nacional de México Campus Zacapoaxtla, 73680, Zacapoaxtla, Puebla, México
| |
Collapse
|
9
|
Potential of B24N24 nanocluster for sensing and delivering aloe-emodin anticancer drug: A DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Anota EC. 2D boron nitride incorporating homonuclear boron bonds: stabilized in neutral, anionic and cationic charge. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
AbstractIn this work, by means of molecular simulation, we propose two new armchair boron nitride (BN) nanosheets with homonuclear boron bonds with chemical compositions: B30N24H18 and B33N21H18 under the scheme of the density functional theory at the level HSEh1PBE/6–311 + + g(d,p). The main characteristic that these nanosheets contain is that the homonuclear boron bonds are concentrated at the central zone and the periphery of the central hexagon (B3N3) of the nanosheets, forming pentagonal and triangular geometries. These structural arrangements generate high cohesion energy (for neutral charge − 10.94 and − 10.10 eV/atom, respectively) compared to the nanosheet with heteronuclear bonds (pristine). Also, as a result of quantum simulations, these nanosheets present an insulator (pristine BNNs)—semiconductor (B30N24H18 nanosheet)—conductor-like (B33N21H18 nanosheet) transition. In addition, it is revealed high polarity (in range of 0.30–4.55 D) and possible magnetic behavior for B33N24H18 composition (2.0 magneton bohr). The two nanosheets are stabilized with global neutral charge, anion (− 1|e|) and cation (+ 1|e|), which could be of great interest in the adsorption process and drug delivery.
Collapse
|
11
|
Sensing response of novel ε-antimonene nanosheet towards ethyl acetate and isopropyl acetate – A DFT insight. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Nagarajan V, Chandiramouli R. Acetaminophen and mepirizole molecular adsorption studies on novel ζ – phosphorene nanotube based on first-principles investigation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2125543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
13
|
Acetophenone and benzophenone adsorption studies on θ-phosphorene nanosheets – A DFT investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Al- and Ga-embedded boron nitride nanotubes as effective nanocarriers for delivery of rizatriptan. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhang L, Cheng X, Li XH, Chen JH, Sun WM. A DFT study on the adsorption behavior of antiviral Favipiravir drug on B N (n = 12, 16, 20, and 24) nanocages: The size effect. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Cyclohexane and n-Hexane adsorption studies on novel hex-star antimonene nanosheets - a first-principles outlook. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
SF6 and SOF2 interaction studies on novel Tricycle Red Phosphorene sheets based on first-principles studies. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Nagarajan V, Deepika K, Swetha B, Reddy KM, Chandiramouli R. δ-antimonene nanosheet as a sensing element for ethyl acetate and butyl acetate – a first-principles study. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - Kota Deepika
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - Baswa Swetha
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - Korni Manideep Reddy
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
19
|
|
20
|
Novel NBN-Embedded Polymers and Their Application as Fluorescent Probes in Fe 3+ and Cr 3+ Detection. Polymers (Basel) 2022; 14:polym14102025. [PMID: 35631907 PMCID: PMC9145644 DOI: 10.3390/polym14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The isosteric replacement of C═C by B–N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.
Collapse
|
21
|
DFT exploration of adsorptive performances of borophene to small sulfur-containing gases. J Mol Model 2022; 28:146. [PMID: 35554690 DOI: 10.1007/s00894-022-05145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Density functional theory (DFT) calculations were applied to study the ability of B36 to adsorb H2S, SO2, SO3, CH3SH, (CH3)2S, and C4H4S gases. Several exchange-correlation including B97D, PBE, B3LYP, M062X, and WB97XD were utilized to evaluate adsorption energies. The initial results showed that boundary boron atoms are the most appropriate interaction sites. The adsorption energies, electron density, electron localized function, and differential charge density plots confirmed the formation of chemical covalent bonds only between SOx and B36. The results of thermochemistry analysis revealed the exothermic nature of the adsorption of sulfur-containing gases on B36; the highest values of ∆H298 were found for SO3/B36 and SO2/B36 systems. The electronic absorption spectra and DOS of B36 did not exhibit significant variations after gases adsorption, while the modeled CD spectra showed a remarkable change in the case of the SOx/B36 system. Accordingly, B36 is not suggested for detecting the studied gases. The effect of imposing mono vacancy defect and external electric field to the adsorption of titled gases on the sorbent showed, while the former did not affect the adsorption energies significantly the later improved the adsorption of gas molecules on the B36 system. The results of the current study could provide deeper molecular insight on the removal of SOx gases by B36 system.
Collapse
|
22
|
Sensing of carbamazepine by AlN and BN nanoclusters in gas and solvent phases: DFT and TD-DFT calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Nagarajan V, Chandiramouli R. CS 2 And H 2S adsorption studies on novel hex-star phosphorene nanosheet – a DFT perspective. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2066027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
24
|
Shakourian-Fard M, Maryamdokht Taimoory S, Ghenaatian HR, Kamath G, Trant JF. Effect of mono-vacant defects on the adsorption properties of deep eutectic solvents onto hexagonal boron-nitride nanoflakes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Carbonyl sulfide and dimethyl sulfide adsorption studies on novel square-octagon antimonene sheets – a first-principles study. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jyothi M, Nagarajan V, Chandiramouli R. Chemisorption of atrazine and diuron molecules on γ-arsenene nanosheet - a first-principles study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Bangari RS, Yadav A, Awasthi P, Sinha N. Experimental and theoretical analysis of simultaneous removal of methylene blue and tetracycline using boron nitride nanosheets as adsorbent. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127943] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Jyothi M, Nagarajan V, Chandiramouli R. Adsorption studies of 2,3-butanedione and acetic acid on ζ-phosphorene sheets based on the first-principles study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Xiao H, Li T, Sun XL, Wan WM, Bao H, Qian Q, Chen Q. Unpredicted Concentration-Dependent Sensory Properties of Pyrene-Containing NBN-Doped Polycyclic Aromatic Hydrocarbons. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010327. [PMID: 35011557 PMCID: PMC8746585 DOI: 10.3390/molecules27010327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.
Collapse
Affiliation(s)
- Hang Xiao
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Tao Li
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Xiao-Li Sun
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| | - Qinghua Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| |
Collapse
|
30
|
Nagarajan V, Chandiramouli R. Sorption studies and removal of chlortetracycline and oxytetracycline using theta phosphorene nanoribbon – A DFT outlook. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Muniyandi S, Sundaram R, Roy A, Kar T. N/OB dative bond supplemented by N-HN/HC Hydrogen Bonds make BN-cages an attractive candidate for DNA-nucleobase adsorption – An MP2 prediction. Phys Chem Chem Phys 2022; 24:16862-16875. [DOI: 10.1039/d2cp01355j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The response of B12N12-nanocage towards DNA-nucleobases (adenine, guanine, cytosine, and thymine) is investigated using MP2 and DFT (M06-2X) levels of theory with 6-311+G** basis set. Multiple BN-cage-nucleobase structures for each...
Collapse
|
32
|
Cao Y, Noori M, Nazari M, Ng Kay Lup A, Soltani A, Erfani-Moghadam V, Salehi A, Aghaei M, Lutfor Rahman M, Sani Sarjadi M, Sarkar SM, Su CH. Molecular docking evaluation of celecoxib on the boron nitride nanostructures for alleviation of cardiovascular risk and inflammatory. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Chandiramouli R, Deepika K, Manideep Reddy K, Swetha B, Nagarajan V. Methylcyclohexane and methyl methacrylate sensing studies using γ-arsenene nanoribbon – a first-principles investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Zhang L, Qi ZD, Ye YL, Li XH, Chen JH, Sun WM. DFT study on the adsorption of 5-fluorouracil on B 40, B 39M, and M@B 40 (M = Mg, Al, Si, Mn, Cu, Zn). RSC Adv 2021; 11:39508-39517. [PMID: 35492488 PMCID: PMC9044419 DOI: 10.1039/d1ra08308b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Based on density functional theory, the adsorption behavior of 5-fluorouracil (5-Fu) on B40 and its derivatives has been explored. It was observed that 5-Fu prefers to combine with the corner boron atom of the B40 cage via one of its oxygen atoms, forming a strong polar covalent B-O bond. The adsorption energy of 5-Fu on B40 was calculated to be -11.15 kcal mol-1, and thus, it can be duly released from B40 by protonation in the slightly acidic environment of tumor tissue, which makes for reducing the toxic and side effects of this drug. Additionally, the substituent and embedding effect of Mg, Al, Si, Mn, Cu, and Zn atoms on the drug delivery performance of B40 have been also considered. We hope this work could offer some implications for the potential application of boron-based nanomaterials, such as B40 in drug delivery.
Collapse
Affiliation(s)
- Li Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Zi-Dan Qi
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Xiang-Hui Li
- The School of Medical Technology and Engineering, Fujian Medical University Fuzhou 350004 Fujian People's Republic of China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University Fuzhou 350007 Fujian People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| |
Collapse
|
35
|
Affiliation(s)
- Chen Hui
- Foundation Department of Yantai Vocational College, Qingdao, People’s Republic of China
| |
Collapse
|
36
|
Cao Y, Kamel M, Mohammadifard K, Heshmati J. M A, Poor Heravi MR, Ghaffar Ebadi A. Probing and comparison of graphene, boron nitride and boron carbide nanosheets for Flutamide adsorption: A DFT computational study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Molecular interaction studies of styrene on single and double-walled square-octagon phosphorene nanotubes – First-principles investigation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Cheng C, Li Z, Dong N, Li R, Wang J, Chen F. Atomic Defect Induced Saturable Absorption of Hexagonal Boron Nitride in Near Infrared Band for Ultrafast Lasing Applications. NANOMATERIALS 2021; 11:nano11123203. [PMID: 34947552 PMCID: PMC8707294 DOI: 10.3390/nano11123203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Defect-induced phenomena in 2D materials has received increasing interest among researchers due to the novel properties correlated with precise modification of materials. We performed a study of the nonlinear saturable absorption of the boron-atom-vacancy defective hexagonal boron nitride (h-BN) thin film at a wavelength of ~1 μm and its applications in ultrafast laser generation. The h-BN is with wide band gap of ~6 eV. Our investigation shows that the defective h-BN has a wide absorption band from visible to near infrared regimes. First-principle calculations based on density functional theory (DFT) indicate that optical property changes may be attributed to the boron-vacancy-related defects. The photoluminescence spectrum shows a strong emission peak at ~1.79 eV. The ultrafast Z-scan measurement shows saturable absorbance response has been detected for the defective h-BN with saturation intensity of ~1.03 GW/cm2 and modulation depth of 1.1%. In addition, the defective h-BN has been applied as a new saturable absorber (SA) to generate laser pulses through the passively Q-switched mode-locking configuration. Based on a Nd:YAG waveguide platform, 8.7 GHz repetition rate and 55 ps pulse duration of the waveguide laser have been achieved. Our results suggest potential applications of defective h-BN for ultrafast lasing and integrated photonics.
Collapse
Affiliation(s)
- Chen Cheng
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Correspondence: (C.C.); (F.C.)
| | - Ziqi Li
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China; (Z.L.); (R.L.)
| | - Ningning Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; (N.D.); (J.W.)
| | - Rang Li
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China; (Z.L.); (R.L.)
| | - Jun Wang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; (N.D.); (J.W.)
| | - Feng Chen
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China; (Z.L.); (R.L.)
- Correspondence: (C.C.); (F.C.)
| |
Collapse
|
39
|
Nagarajan V, Chandiramouli R. ϕ-Phosphorene sheets as adsorbing medium for dichloromethane and tetrachloroethylene molecules – a DFT outlook. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1986163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- V. Nagarajan
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
40
|
Interaction studies of benzene and phenol on novel 4–8 arsenene nanotubes – A DFT insight. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Twisted bilayer arsenene sheets as a chemical sensor for toluene and M-xylene vapours - A DFT investigation. J Mol Graph Model 2021; 109:108034. [PMID: 34555724 DOI: 10.1016/j.jmgm.2021.108034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
2D (two-dimensional) materials are emerging in today's world. Among the 2D materials, arsenene sheets are prominently used as chemical and biosensors. In the present work, the twisted bilayer arsenene sheets (TB-AsNS) are used to adsorb toluene and M-xylene vapours. Moreover, the band gap of pristine TB-AsNS is calculated to be 0.437 eV. Besides, the surface adsorption of toluene and M-xylene vapours modify the electronic properties of TB-AsNS noticed from the band structure, density of states, and electron density difference diagrams. The surface assimilation of target toluene and M-xylene on TB-AsNS falls in the physisorption regime facilitating the adsorption and desorption of molecules. Also, the charge transfer analysis infers that TB-AsNS acts as acceptor and target molecules play as donors. The findings support that TB-AsNS can be used as a sensing medium towards M-xylene and toluene.
Collapse
|
42
|
Shakerzadeh E. Endohedral M@B
40
(M = Na and Ca) metalloborospherenes as innovative potential carriers for chemotherapy melphalan drug: A theoretical study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
43
|
Theory for designing mechanically stable single- and double-walled SiGe nanopeapods. J Mol Model 2021; 27:214. [PMID: 34195893 DOI: 10.1007/s00894-021-04837-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
Herein, we utilized molecular dynamic (MD) simulations using LAMMPS software and selecting Tersoff and Lennard-Jones potentials to design and investigate mechanical properties of (8,8), (9,9), (10,10), and (11,11) single-walled and (8,8)@(11,11) double-walled silicon-germanium (SiGe) armchair nanopeapods. The number of encapsulated fullerenes and the working temperature were changed as variables to evaluate the mechanical properties. The larger nanopeapods had lower Young's modulus and failure strain, but, surprisingly enough, no significant variation was found in failure strain values by increasing the number of Si30Ge30 cages and the temperature (300-900 K). Overall, higher mechanical properties were the case for double-walled SiGe nanopeapods and that the more the number of encapsulated cages, the lower the mechanical properties whatever the nanopeapod. Amazingly, fullerenes remained undamaged even after the SiGe nanopeapods ruptured. Thus, thermally/mechanically stable nanopeapods developed theoretically herein can be considered potential super-carriers for drug and gene encapsulation.
Collapse
|
44
|
Zipper phosphorene as sensing element towards formaldehyde and acetaldehyde - A first-principles insight. J Mol Graph Model 2021; 107:107971. [PMID: 34217025 DOI: 10.1016/j.jmgm.2021.107971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
We ascertained the structural stability of zipper phosphorene nanosheet (zP-NS) and studied the adsorption behaviour of toxic aldehyde compounds including formaldehyde (FD) and acetaldehyde (AD) on zP-NS based on first-principles calculation. Considerably, zP-NS reveal a semiconducting character with band gap of 1.35 eV. Especially, four distinct favourable adsorption positions including bridge-, hollow-, top- and valley-site of FD and AD vapours on zP-NS were investigated. Furthermore, the calculated binding-energy of prominent adsorption sites are observed to be in the scope of -0.143 eV to -0.411 eV advocating physisorption nature of the interaction of chief aldehydes on zP-NS. The overall outcomes recommend that zP-NS can be persuasively utilised as a chemical sensor for monitoring FD and AD molecules in indoor air environment.
Collapse
|
45
|
Nagarajan V, Chandiramouli R. Chlorobenzene and 1, 4-dichlorobenzene adsorption studies on θ-Arsenene nanosheet – a first-principles analysis. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1936248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- V. Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| | - R. Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
46
|
Nagarajan V, Chandiramouli R. Interaction studies of glycine, acetate and methylamine on β-tellurene nanoribbon – A first-principles analysis. J Mol Graph Model 2021; 105:107895. [DOI: 10.1016/j.jmgm.2021.107895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023]
|