1
|
Hillyer MB, Jordan JH, Ernst NE, Nam S, Easson MW. Cu 2O/CuO Nanoparticle-Cotton Fiber Biocomposite Catalyst: Self-Improvement through Morphological Changes during Methyl Orange Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27174-27182. [PMID: 39680730 DOI: 10.1021/acs.langmuir.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, the application of a novel polymer-supported Cu2O/CuO nanoparticle catalyst for the efficient degradation of an organic dye, in which the nanoparticle catalyst is incorporated within a natural plant fiber matrix, is presented. The use of plant fibers provides a renewable and environmentally friendly support material, and enhances the catalytic efficiency over consecutive degradation cycles. This innovative design promotes the efficient adsorption and degradation of dye. The nanoparticle biocomposite showed a remarkable capacity to degrade methyl orange in solution (50 ppm, 150 mL) in <3 h (pH 7.2) or <1.5 h (pH 9.1) using 150 mg catalyst material containing 1.7 wt % copper content. Over five catalytic reaction cycles, the content of Cu1+ relative to Cu2+ increased from 57.6 to 94.1%, average particle size decreased from 54.7 ± 58.5 to 28.7 ± 22.0 nm and the average circularity increased from 0.69 ± 0.25 to 0.75 ± 0.25, while maintaining high catalytic degradation efficiency (>99.6%). The experimental results demonstrate high degradation rates, showcasing the catalyst's potential for sustainable industrial waste remediation applications.
Collapse
Affiliation(s)
- Matthew B Hillyer
- Cotton Fiber Bioscience and Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Jacobs H Jordan
- Commodity Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Nicholas E Ernst
- Department of Chemistry, Purdue University Northwest, 2200 169th Street, Hammond, Indiana 46323, United States
| | - Sunghyun Nam
- Cotton Fiber Bioscience and Utilization Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| | - Michael W Easson
- Cotton Quality and Innovation Research Unit, United States Department of Agriculture-Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, Louisiana 70124, United States
| |
Collapse
|
2
|
Kanwal S, Bibi S, Haleem R, Waqar K, Mir S, Maalik A, Sabahat S, Hassan S, Awwad NS, Ibrahium HA, Alturaifi HA. Functional potential of chitosan-metal nanostructures: Recent developments and applications. Int J Biol Macromol 2024; 282:136715. [PMID: 39454923 DOI: 10.1016/j.ijbiomac.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Chitosan (Cs), a naturally occurring biopolymer, has garnered significant interest due to its inherent biocompatibility, biodegradability, and minimal toxicity. This study investigates the effectiveness of various reaction strategies, including acylation, acetylation, and carboxymethylation, to enhance the solubility profile of Cs. This review provides a detailed examination of the rapidly developing field of Cs-based metal complexes and nanoparticles. It delves into the diverse synthesis methodologies employed for their fabrication, specifically focusing on ionic gelation and in-situ reduction techniques. Furthermore, the review offers a comprehensive analysis of the characterization techniques utilized to elucidate the physicochemical properties of these complexes. A range of analytical techniques are utilized, including Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and others. By comprehensively exploring a wide range of applications, the review emphasizes the significant potential of Cs in various scientific disciplines. Diagrams, figures, and tables effectively illustrate the synthesis processes, promoting a clear understanding for the reader. Chitosan-metal nanostructures/nanocomposites significantly enhance antimicrobial efficacy, drug delivery, and environmental remediation compared to standard chitosan composites. The integration of metal nanoparticles, such as silver or gold, improves chitosan's effectiveness against a range of pathogens, including resistant bacteria. These nanocomposites facilitate targeted drug delivery and controlled release, boosting therapeutic bioavailability. Additionally, they enhance chitosan's ability to absorb heavy metals and dyes from wastewater, making them effective for environmental applications. Overall, chitosan-metal nanocomposites leverage chitosan's biocompatibility while offering improved functionalities, making them promising materials for diverse applications. This paper sheds light on recent advancements in the applications of Cs metal complexes for various purposes, including cancer treatment, drug delivery enhancement, and the prevention of bacterial and fungal infections.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sehrish Bibi
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Rabia Haleem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology Kohat, KPK, Pakistan
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Eroğlan AN, Baran T. Palladium nanoparticles anchored on NiO particles-modified micro-size chitosan spheres: A promising, active, and retrievable catalyst system for treatment of environmental pollutants. Int J Biol Macromol 2024; 276:133835. [PMID: 39002901 DOI: 10.1016/j.ijbiomac.2024.133835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/24/2023] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Efficient treatment of toxic organic pollutants in water/wastewater by using innovative, cost efficient, and simple technologies has recently become an important issue worldwide. Remediation of these pollutants with chemical reduction in the presence of a nano-sized catalyst and a reducing agent is one of the most useful methodologies. In the present study, we have designed a promising heterogeneous catalyst system (Pd@CS-NiO) by easy and efficient stabilization of palladium nanoparticles on the surface of microspheres composed of chitosan (CS)-NiO particles (CS-NiO) for the reduction of organic pollutants. The nano-structure of the developed Pd@CS-NiO was successfully validated using FE-SEM, XRD, EDS, TEM, and FTIR/ATR and its particles size was determined as 10 nm. The catalytic power of Pd@CS-NiO was then assessed in the reduction of 4-nitro-o-phenylenediamine (4-NPDA), 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), 2-nitroaniline (2-NA), and some organic dyes, namely methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) in aqueous medium at room temperature. The reductions were thoroughly studied spectro-photometrically. The tests displayed that the synthesized Pd@CS-NiO was a highly active and useful catalyst that reduced these pollutants in 0-145 s. Moreover, the rate constants for 2-NA, 4-NP, 4-NA, 4-NPDA, MO, and RhB were found to be 0.017 s-1, 0.011 s-1, 0.006 s-1, 0.013 s-1, 0.023 s-1, and 0.03 s-1, respectively. Moreover, the recycling test indicated that Pd@CS-NiO may be recovered easily thanks to its micro size nature and could be used up to seven steps, confirming its practical application potential.
Collapse
Affiliation(s)
- Afife Nur Eroğlan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
4
|
Pang Y, Liu B, Wang P, Li J, Cai J, Zhong L. Synthesis and characterization of chitosan-copper nanocomposites and their catalytic properties for 4-nitrophenol reduction. Int J Biol Macromol 2024; 258:129164. [PMID: 38163497 DOI: 10.1016/j.ijbiomac.2023.129164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Biopolymer-based copper nanoparticles (CuNPs) have become an area of significant interest due to their wide-ranging applications in a variety of fields. However, there remains a challenge in tailoring their morphologies and improving their properties. In this study, CuNPs were synthesized via wet chemical reduction using sodium hypophosphite monohydrate (NaH2PO2·H2O), l-ascorbic acid and chitosan. The effect of different synthesis conditions, including reaction pH, temperature, time, concentration of NaH2PO2·H2O, l-ascorbic acid and chitosan, as well as the deacetylation degree (DD) of chitosan, on the synthesis of CuNPs was investigated. The synthesized CuNPs were characterized by various analytical techniques. The catalytic properties of synthesized CuNPs were investigated for the reduction of 4-nitrophenol (4-NP) in the presence of sodium borohydride. The synthesis-morphology-catalytic activity relationship of CuNPs was discussed. The results suggested that the morphology of CuNPs could be adjusted by controlling the synthesis conditions. Chitosan DD significantly impacts the morphology of the synthesized CuNPs. As the chitosan DD decreased from 91.8 % to 52.3 %, the average particle size of synthesized CuNPs decreased from 43.9 ± 10.6 to 17.7 ± 5.9 nm and the shape changed from anisotropy to near-sphere. CuNPs synthesized using low DD (53.2 %) chitosan (CuNPs-N3) demonstrated the highest 4-NP conversion rate of 99.1 % and reaction rate constant of 0.3540 min-1. CuNPs-N3 was thermodynamically and kinetically more feasible than CuNPs synthesized with high DD chitosan. These findings provide important insights for further designing and developing hierarchical nanostructured CuNPs catalysts for broader applications.
Collapse
Affiliation(s)
- Yajie Pang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Bingbing Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Pengfei Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Jun Cai
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
| | - Lian Zhong
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Das TK, Jesionek M, Çelik Y, Poater A. Catalytic polymer nanocomposites for environmental remediation of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165772. [PMID: 37517738 DOI: 10.1016/j.scitotenv.2023.165772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The removal of harmful chemicals and species from water, soil, and air is a major challenge in environmental remediation, and a wide range of materials have been studied in this regard. To identify the optimal material for particular applications, research is still ongoing. Polymer nanocomposites (PNCs), which combine the benefits of nanoparticles with polymers, an alternative to conventional materials, may open up new possibilities to overcome this difficulty. They have remarkable mechanical capabilities and compatibility due to their polymer matrix with a very high surface area to volume ratio brought about by their special physical and chemical properties, and the extremely reactive surfaces of the nanofillers. Composites also provide a viable answer to the separation and reuse problems that hinder nanoparticles in routine use. Understanding these PNCs materials in depth and using them in practical environmental applications is still in the early stages of development. The review article demonstrates a crisp introduction to the PNCs with their advantageous properties as a catalyst in environmental remediation. It also provides a comprehensive explanation of the design procedure and synthesis methods for fabricating PNCs and examines in depth the design methods, principles, and design techniques that guide proper design. Current developments in the use of polymer nanocomposites for the pollutant treatment using three commonly used catalytic processes (catalytic and redox degradation, electrocatalytic degradation, and biocatalytic degradation) are demonstrated in detail. Additionally, significant advances in research on the aforementioned catalytic process and the mechanism by which contaminants are degraded are also amply illustrated. Finally, there is a summary of the research challenges and future prospects of catalytic PNCs in environmental remediation.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
| | - Marcin Jesionek
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Yasemin Çelik
- Department of Materials Science and Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
6
|
Javadian S, Ramezani A, Sadrpoor SM, Saeedi Dehaghani AH. The effect of chemical bond and solvent solubility parameter on stability and absorption value of functionalized PU sponge. CHEMOSPHERE 2023; 340:139936. [PMID: 37619755 DOI: 10.1016/j.chemosphere.2023.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Seawater pollution from various sources such as industrial effluents, ship washing at sea, and oil spills harm humans and the marine environment. Therefore, finding ways to eliminate this pollution is crucial. This study successfully modified a polyurethane sponge through a simple dip-coating method with functionalized graphene oxide incorporating octadecylamine and oleic acid, resulting in a hydrophobic sponge capable of absorbing crude oil and various organic solvents. Characterization analyses confirmed the synthesis. The absorption capacity of the modified sponges was examined, for example, the PU sponge has absorbed 4 g/g engine oil, while the modified GO-ODA-PU sponge has increased its absorption to 36 g/g. The GO-ODA-PU sponge demonstrated great reusability compared to the GO-OA-PU sponge owing to the strong covalent bond formed between GO and ODA, which is superior to the weak hydrogen bond formed between GO and OA. The absorption capacity of the GO-OA-PU sponge decreased by 30%. The contact angle test showed that GO-ODA-PU and GO-OA-PU sponges had contact angles of 131° and 115°, respectively. Additionally, the GO-ODA-PU sponge performed optimally for semi-polar solvents in the solubility parameter range of 18-19, with its absorption capacity reaching its maximum value. The amount of oil recycling is even possible up to 98%.
Collapse
Affiliation(s)
- Soheila Javadian
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran.
| | - Anita Ramezani
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | - S Morteza Sadrpoor
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
7
|
Akhtar K, Alhaj AA, Bakhsh EM, Khan SB, Fagieh TM. SnAg 2O 3-Coated Adhesive Tape as a Recyclable Catalyst for Efficient Reduction of Methyl Orange. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6978. [PMID: 37959575 PMCID: PMC10648674 DOI: 10.3390/ma16216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Silver oxide-doped tin oxide (SnAg2O3) nanoparticles were synthesized and different spectroscopic techniques were used to structurally identify SnAg2O3 nanoparticles. The reduction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB), and methyl orange (MO) was studied using SnAg2O3 as a catalyst. Only 1.0 min was required to reduce 95% MO; thus, SnAg2O3 was found to be effective with a rate constant of 3.0412 min-1. Being a powder, SnAg2O3 is difficult to recover and recycle multiple times. For this reason, SnAg2O3 was coated on adhesive tape (AT) to make it recyclable for large-scale usage. SnAg2O3@AT catalyst was assessed toward MO reduction under various conditions. The amount of SnAg2O3@AT, NaBH4, and MO was optimized for best possible reduction conditions. The catalyst had a positive effect since it speed up the reduction of MO by adding more SnAg2O3@AT and NaBH4 as well as lowering the MO concentration. SnAg2O3@AT totally reduced MO (98%) in 3.0 min with a rate constant of 1.3669 min-1. These findings confirmed that SnAg2O3@AT is an effective and useful catalyst for MO reduction that can even be utilized on a large scale for industrial purposes.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (E.M.B.); (S.B.K.); (T.M.F.)
| | | | | | | | | |
Collapse
|
8
|
Brown HK, El Haskouri J, Marcos MD, Ros-Lis JV, Amorós P, Úbeda Picot MÁ, Pérez-Pla F. Synthesis and Catalytic Activity for 2, 3, and 4-Nitrophenol Reduction of Green Catalysts Based on Cu, Ag and Au Nanoparticles Deposited on Polydopamine-Magnetite Porous Supports. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2162. [PMID: 37570480 PMCID: PMC10421209 DOI: 10.3390/nano13152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
This work reports on the synthesis of nine materials containing Cu, Ag, Au, and Ag/Cu nanoparticles (NPs) deposited on magnetite particles coated with polydopamine (PDA). Ag NPs were deposited on two PDA@Fe3O4 supports differing in the thickness of the PDA film. The film thickness was adjusted to impart a textural porosity to the material. During synthesis, Ag(I) was reduced with ascorbic acid (HA), photochemically, or with NaBH4, whereas Au(III), with HA, with the PDA cathecol groups, or NaBH4. For the material characterization, TGA, XRD, SEM, EDX, TEM, STEM-HAADF, and DLS were used. The catalytic activity towards reduction of 4-, 3- and 2-nitrophenol was tested and correlated with the synthesis method, film thickness, metal particle size and NO2 group position. An evaluation of the recyclability of the materials was carried out. In general, the catalysts prepared by using soft reducing agents and/or thin PDA films were the most active, while the materials reduced with NaBH4 remained unchanged longer in the reactor. The activity varied in the direction Au > Ag > Cu. However, the Ag-based materials showed a higher recyclability than those based on gold. It is worth noting that the Cu-containing catalyst, the most environmentally friendly, was as active as the best Ag-based catalyst.
Collapse
Affiliation(s)
- Helen K Brown
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - María D Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - M Ángeles Úbeda Picot
- Departamento de Química Inorgànica, Universitat de València, Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Francisco Pérez-Pla
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
9
|
Zhang Z, Ahmed AIS, Malik MZ, Ali N, Khan A, Ali F, Hassan MO, Mohamed BA, Zdarta J, Bilal M. Cellulose/inorganic nanoparticles-based nano-biocomposite for abatement of water and wastewater pollutants. CHEMOSPHERE 2023; 313:137483. [PMID: 36513201 DOI: 10.1016/j.chemosphere.2022.137483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Nanostructured materials offer a significant role in wastewater treatment with diminished capital and operational expense, low dose, and pollutant selectivity. Specifically, the nanocomposites of cellulose with inorganic nanoparticles (NPs) have drawn a prodigious interest because of the extraordinary cellulose properties, high specific surface area, and pollutant selectivity of NPs. Integrating inorganic NPs with cellulose biopolymers for wastewater treatment is a promising advantage for inorganic NPs, such as colloidal stability, agglomeration prevention, and easy isolation of magnetic material after use. This article presents a comprehensive overview of water treatment approaches following wastewater remediation by green and environmentally friendly cellulose/inorganic nanoparticles-based bio-nanocomposites. The functionalization of cellulose, functionalization mechanism, and engineered hybrid materials were thoroughly discussed. Moreover, we also highlighted the purification of wastewater through the composites of cellulose/inorganic nanoparticles via adsorption, photocatalytic and antibacterial approach.
Collapse
Affiliation(s)
- Zhen Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Abdulrazaq Ibrahim Said Ahmed
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Muhammad Zeeshan Malik
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Nisar Ali
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Mohamed Osman Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| |
Collapse
|
10
|
A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023; 28:molecules28031081. [PMID: 36770748 PMCID: PMC9918932 DOI: 10.3390/molecules28031081] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Dye and nitro-compound pollution has become a significant issue worldwide. The adsorption and degradation of dyes and nitro-compounds have recently become important areas of study. Different methods, such as precipitation, flocculation, ultra-filtration, ion exchange, coagulation, and electro-catalytic degradation have been adopted for the adsorption and degradation of these organic pollutants. Apart from these methods, adsorption, photocatalytic degradation, and chemical degradation are considered the most economical and efficient to control water pollution from dyes and nitro-compounds. In this review, different kinds of dyes and nitro-compounds, and their adverse effects on aquatic organisms and human beings, were summarized in depth. This review article covers the comprehensive analysis of the adsorption of dyes over different materials (porous polymer, carbon-based materials, clay-based materials, layer double hydroxides, metal-organic frameworks, and biosorbents). The mechanism and kinetics of dye adsorption were the central parts of this study. The structures of all the materials mentioned above were discussed, along with their main functional groups responsible for dye adsorption. Removal and degradation methods, such as adsorption, photocatalytic degradation, and chemical degradation of dyes and nitro-compounds were also the main aim of this review article, as well as the materials used for such degradation. The mechanisms of photocatalytic and chemical degradation were also explained comprehensively. Different factors responsible for adsorption, photocatalytic degradation, and chemical degradation were also highlighted. Advantages and disadvantages, as well as economic cost, were also discussed briefly. This review will be beneficial for the reader as it covers all aspects of dye adsorption and the degradation of dyes and nitro-compounds. Future aspects and shortcomings were also part of this review article. There are several review articles on all these topics, but such a comprehensive study has not been performed so far in the literature.
Collapse
|
11
|
Godiya CB, Kumar S, Park BJ. Superior catalytic reduction of methylene blue and 4-nitrophenol by copper nanoparticles-templated chitosan nanocatalyst. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
12
|
Zhang J, Corkett AJ, van Leusen J, Nelson R, Dronskowski R. Cu(C 2N 4H 4) 2Br 2·2H 2O: an antiferromagnetic cyanoguanidine coordination compound and its characterization. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Phase-pure copper(II) cyanoguanidine bromide hydrate, Cu(C2N4H4)2Br2·2H2O (1), was precipitated from aqueous solution and its structure was solved and refined from single-crystal X-ray diffraction data at 100 K. 1 crystallizes in space group P21/n with a = 12.09(3) Å, b = 3.925(9) Å, c = 13.79(3) Å, β = 96.62(6)°, Z = 2, and V = 650(2) Å3. The copper(II) cation is coordinated by two cyanoguanidine molecules adopting the cyanoimine shape and four bromide anions in a Jahn–Teller-distorted motif, forming infinite chains of edge-sharing octahedra along the crystallographic b axis. IR spectroscopic and magnetic susceptibility measurements were carried out in addition to density-functional electronic-structure calculations performed to assess both the magnetic ground state and the exchange interactions. Experiment and theory agree as regards antiferromagnetism and weak magnetic exchange.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Inorganic Chemistry, RWTH Aachen University , 52056 Aachen , Germany
| | - Alex J. Corkett
- Institute of Inorganic Chemistry, RWTH Aachen University , 52056 Aachen , Germany
| | - Jan van Leusen
- Institute of Inorganic Chemistry, RWTH Aachen University , 52056 Aachen , Germany
| | - Ryky Nelson
- Institute of Inorganic Chemistry, RWTH Aachen University , 52056 Aachen , Germany
| | - Richard Dronskowski
- Chair of Solid-State and Quantum Chemistry , Institute of Inorganic Chemistry, RWTH Aachen University , 52056 Aachen , Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic , 7098 Liuxian Blvd, Nanshan District , Shenzhen , China
| |
Collapse
|
13
|
Maniyazagan M, Hussain M, Kang WS, Kim SJ. Hierarchical Sr-Bi2WO6 photocatalyst for the degradation of 4-nitrophenol and methylene blue. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Cu(II)/Guanidine Functionalized Disiloxane Complex of Supramolecular Structures for Visible Light-Driven Photocatalysis of Congo Red. Polymers (Basel) 2022; 14:polym14040817. [PMID: 35215730 PMCID: PMC8963006 DOI: 10.3390/polym14040817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023] Open
Abstract
The present study focuses on the synthesis of a new guanidine-functionalized disiloxane used as a ligand to obtain copper(II) complexes linked through hydrogen bonding into supramolecular structures. A two-step procedure was used to prepare the guanidine functionalized disiloxane ligand. Firstly, the hydrosilylation reaction between the siloxane precursor, namely 1,1,3,3-tetramethyldisiloxane (DS), and the allyl glycidyl ether (AGE) was performed in the presence of a platinum catalyst resulting in glycidoxypropyldisiloxane (DS-PMO) intermediary compound. In the second step, DS-PMO derivative was modified with 1,1,3,3-tetramethyl guanidine (TMGu) to obtain the guanidine-functionalized disiloxane ligand (bGu-DS) that was further used for the coordination of copper(II) acetate hydrate. The structures of the ligand and of its Cu(II) complex were confirmed by spectral methods (IR, UV-Vis, NMR, XRF) and correlated with theoretical calculations using semi-empirical PM6 and DFT methods. The copper(II) complex was found to exhibit low optical band gap energy (2.9 eV) and good photocatalytic activity under visible light irradiation in the decomposition of Congo Red (CR). A dye removal efficiency higher than 97% at the catalyst and CR concentrations of 1 and, respectively, 200 mg/L was obtained.
Collapse
|
15
|
Rajendran S, Hoang TKA, Trudeau ML, Jalil AA, Naushad M, Awual MR. Generation of novel n-p-n (CeO 2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118375. [PMID: 34656681 DOI: 10.1016/j.envpol.2021.118375] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Recently, hetero junction materials (p-n-p and n-p-n) have been developed for uplifting the visible light activity to destroy the harmful pollutants in wastewater. This manuscript presents a vivid description of novel n-p-n junction materials namely CeO2-PPy-ZnO. This novel n-p-n junction was applied as the photocatalyst in drifting the mobility of charge carriers and hence obtaining the better photocatalytic activity when compared with p-n and pure system. Such catalyst's syntheses were successful via the copolymerization method. The structural, morphological and optical characterization techniques were applied to identify the physio-chemical properties of the prepared materials. Additionally, the superior performance of this n-p-n nanostructured material was demonstrated in the destruction of micro organic (chlorophenol) toxic wastes under visible light. The accomplished ability of the prepared catalysts (up to 92% degradation of chlorophenol after 180 min of irradiation) and their profound degradation mechanism was explained in detail.
Collapse
Affiliation(s)
- Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Tuan K A Hoang
- Institut de Recherche d'Hydro-Québec, 1806, boul, Lionel-Boulet, Varennes, Québec, J3X 1S1, Canada
| | - Michel L Trudeau
- Institut de Recherche d'Hydro-Québec, 1806, boul, Lionel-Boulet, Varennes, Québec, J3X 1S1, Canada
| | - A A Jalil
- School of Chemical and Energy Engineering Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Md Rabiul Awual
- Material Science and Research Center, Japan Atomic Energy Agency (SPring-8), Hyogo, 679-5148, Japan
| |
Collapse
|
16
|
Çalışkan M, Akay S, Kayan B, Baran T, Kalderis D. Preparation and Application of a Hydrochar-Based Palladium Nanocatalyst for the Reduction of Nitroarenes. Molecules 2021; 26:6859. [PMID: 34833951 PMCID: PMC8621521 DOI: 10.3390/molecules26226859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, a novel heterogeneous catalyst was successfully fabricated through the decoration of palladium nanoparticles on the surface of designed Fe3O4-coffee waste composite (Pd-Fe3O4-CWH) for the catalytic reduction of nitroarenes. Various characterization techniques such as XRD, FE-SEM and EDS were used to establish its nano-sized chemical structure. It was determined that Pd-Fe3O4-CWH is a useful nanocatalyst, which can efficiently reduce various nitroarenes, including 4-nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), 4-nitro-o-phenylenediamine (4-NPD), 2-nitroaniline (2-NA) and 3-nitroanisole (3-NAS), using NaBH4 in aqueous media and ambient conditions. Catalytic reactions were monitored with the help of high-performance liquid chromatography. Additionally, Pd-Fe3O4-CWH was proved to be a reusable catalyst by maintaining its catalytic activity through six successive runs. Moreover, the nanocatalyst displayed a superior catalytic performance compared to other catalysts by providing a shorter reaction time to complete the reduction in nitroarenes.
Collapse
Affiliation(s)
- Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey; (M.Ç.); (S.A.); (B.K.); (T.B.)
| | - Sema Akay
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey; (M.Ç.); (S.A.); (B.K.); (T.B.)
| | - Berkant Kayan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey; (M.Ç.); (S.A.); (B.K.); (T.B.)
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey; (M.Ç.); (S.A.); (B.K.); (T.B.)
| | - Dimitrios Kalderis
- Department of Electronic Engineering, Hellenic Mediterranean University, 73100 Chania, Greece
| |
Collapse
|
17
|
Wang Z, Lü S, Yang F, Kabir SF, Mahmud S, Liu H. Hyaluronate macromolecules reduced-stabilized colloidal palladium nanocatalyst for azo contaminated wastewater treatment. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Liang T, Liu J, Wei Z, Shi D. Preparation of porous polyamide 6(PA6)membrane with copper oxide (CuO) nanoparticles selectively localized at the wall of the pores via reactive extrusion. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|