1
|
Algaissi A, Taha MME, Alamer E, Kameli N, Alhazmi A, Khamjan N, Abdelwahab SI. Trends and gaps in hydroxychloroquine and COVID-19 research (2020-2023): Performance and conceptual mapping. J Infect Public Health 2025; 18:102623. [PMID: 39813964 DOI: 10.1016/j.jiph.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hydroxychloroquine and Chloroquine (CQ) and Hydroxychloroquine (HCQ) are antimalarial drugs with well-known anti-inflammatory and antiviral effects used to treat various diseases, with few side effects. After COVID-19 emergence, numerous researches from around the world have examined the potential of using CQ or HCQ as potential treatment of COVID-19. However, conflicting outcomes have been found in COVID-19 clinical trials after treatment with CQ or HCQ. This study aims to evaluate research on CQ and HCQ for COVID-19 treatment and prophylaxis control using bibliometric methods. METHODS We analyzed bibliometric data on HCQ and COVID-19 (HCQ-C19) quantitatively and semantically (2020-2023) using the Scopus database VOSviewer, Bibliometrix, and MS Excel. RESULTS Analyses of 7471 original and conference articles revealed that the total number of publications has continually increased. The country producing the most articles in this field was the United States, followed by Italy, India, and Spain. The top-productive authors on HCQ-C19 are Mussini, C., and Raoult, D. (Italy) with 23 and 21 articles, respectively. The top-impactful organization is IHU Méditerranée Infection, France. A Bibliometrix's network analysis based on the co-occurrence of keywords revealed the following themes HCQ-C19, including "clinical research/practice," "COVID-19," "thrombosis," "HCQ," "epidemiology," and "infectious disease." CONCLUSION In conclusion, the analysis reveals a growing interest in HCQ-C19 research. Prominent contributions come from the United States, Italy, India, and Spain. Key themes include clinical research/practice, COVID-19, thrombosis, HCQ, epidemiology, and infectious disease. Future recommendations include conducting well-designed clinical trials and fostering collaborative interdisciplinary efforts.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Edrous Alamer
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nader Kameli
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdulaziz Alhazmi
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
2
|
Kasielska-Trojan A, Manning JT, Jabłkowski M, Białkowska-Warzecha J, Kwaśniewska O, Hirschberg AL, Antoszewski B. Digit ratios and hospitalization for COVID-19: A test of the low-androgen-driven and high-androgen-driven theories of COVID-19 severity. Andrology 2025; 13:564-572. [PMID: 39074048 DOI: 10.1111/andr.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Sex hormones are likely to be important determinants of COVID-19 severity, and two opposing explanations regarding severity, the low-androgen-driven and high-androgen-driven theories, seek to explain this pattern. Digit ratios are sex dependent (males < females) and are claimed to be markers for both prenatal and postnatal testosterone. OBJECTIVES Here, we use a measure of COVID-19severity (hospitalization), compare digit ratios in patients and controls and consider whether vaccination status changed these associations. MATERIAL AND METHODS Four digits were measured (2D, 3D, 4D, 5D). There were 194 participants (94 hospitalized patients [45 men] and 100 controls [53 men]) in Sample I and 162 participants (100 hospitalized [42 men], including 40 vaccinated and 62 controls [32 men]) in Sample II. Six ratios were calculated (2D:3D; 2D:4D; 2D:5D; 3D:4D; 3D:5D, 4D:5D) and compared between COVID-19 hospitalized and non-hospitalized patients and vaccinated and non-vaccinated. RESULTS In comparison to controls, we found higher ("feminized") means in patient ratios that included 5D (2D:5D; 3D:5D; 4D:5D) in both samples. The differences were independent of sex and age. Hospitalized patients with COVID-19 have higher (feminized) means and higher standard deviations (SDs) for 5D digit ratios. DISCUSSION Digit ratios are sex dependent (males < females) and are considered as markers for both prenatal and postnatal testosterone. If verified in future studies, the results will be helpful in regard to targeting mortality-reducing therapies for COVID-19 in certain groups of patients. CONCLUSION We conclude that the association between high (feminized) 5D ratios and hospitalization supports the low-androgen-driven theory of COVID-19 severity.
Collapse
Affiliation(s)
- Anna Kasielska-Trojan
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Institute of Surgery, Medical University of Lodz, Lodz, Poland
| | - John T Manning
- Applied Sports, Technology, Exercise, and Medicine (A-STEM), Swansea University, Swansea, UK
| | - Maciej Jabłkowski
- Department of Infectious and Liver Diseases, Medical University of Lodz, Lodz, Poland
| | | | | | - Angelica L Hirschberg
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden and Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Bogusław Antoszewski
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Institute of Surgery, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Abdizadeh T, Rezaei S, Emadi Z, Sadeghi R, Saffari-Chaleshtori J, Sadeghi M. Investigation of bioremediation for glyphosate and its metabolite in soil using arbuscular mycorrhizal GmHsp60 protein: a molecular docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024:1-25. [PMID: 39829398 DOI: 10.1080/07391102.2024.2445767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 01/22/2025]
Abstract
The widespread use of glyphosate and the high dependence of the agricultural industry on this herbicide cause environmental pollution and pose a threat to living organisms. One of the appropriate solutions in sustainable agriculture to deal with pollution caused by glyphosate and its metabolites is creating a symbiotic relationship between plants and mycorrhizal fungi. Glomalin-related soil protein is a key protein for the bioremediation of glyphosate and its metabolite aminomethyl phosphonic acid in soil. This study uses homology modeling, molecular docking, and molecular dynamic simulation approaches to investigate the binding mechanism of glomalin-related soil protein from arbuscular mycorrhiza (GmHsp60) with glyphosate and its metabolite and the role of soil protein in the removal and sequestering of common agricultural soil pollutants. GmHsp60 protein structure was predicted by homology modeling, and the quality of the generated model was assessed. Then, the interaction between glyphosate and aminomethyl phosphonic acid and the modeled GmHsp60 protein was explored by molecular docking. Based on docking results, GmHsp60 has an efficient role in the bioremediation of glyphosate and aminomethyl phosphonic acid (-6.03 and -5.34 kcal/mol). Glyphosate forms three hydrogen bonds with Lys258, Gly262, and Glu58 of GmHsp60, and aminomethyl phosphonic acid forms three hydrogen bonds with Lys258, Gly261, and Gly262 of GmHsp60. In addition, the glyphosate's and its metabolite's stability was confirmed by molecular docking simulations and binding free energy calculations using MM/PBSA analysis. This study provides a molecular-level understanding of GmHsp60 expression and function for glyphosate bioremediation.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Rezaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ramin Sadeghi
- Chemical Engineering Department, Iran University of Science & Technology, Narmak, Tehran, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehraban Sadeghi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Koyambo-Konzapa SJ, Oubella A, Issaoui N, Amolo G, Taha ML, Geesi MH, Aldakhil T, Riadi Y, Auhmani A, Itto MYA. Molecular structure, spectroscopic (FT-IR, NMR and UV–Vis), electronic properties, molecular docking, and molecular dynamics studies on novel thiazolidinone derivative: A potent breast cancer drug. J Mol Struct 2024; 1318:139301. [DOI: 10.1016/j.molstruc.2024.139301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
5
|
Raman APS, Pongpaiboon S, Bhatia R, Lal Dabodhia K, Kumar A, Kumar D, Jain P, Sagar M, Singh P, Kumari K. In silico study on antidiabetic and antioxidant activity of bioactive compounds in Ficus carica L. J Biomol Struct Dyn 2024; 42:7515-7531. [PMID: 37545143 DOI: 10.1080/07391102.2023.2240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Hyperglycemia is one of the diagnostic issues in diabetes mellitus and is considered as a complex metabolic condition. It has been one of the most prevalent illnesses of the twenty-first century and still rising at an alarming rate across the globe and expected to impact 693 million individuals by 2045. Therefore, it is mandatory to develop more effective and safer treatments to manage diabetes. One of the ways to manage hyperglycemia is through inhibiting carbohydrate digestion and thereby lowering the glucose formation in the human body. The enzyme salivary amylase and pancreatic amylase is responsible for cleaving α-1,4-glucoside bond. Amylase inhibitors can lower blood glucose in diabetics by slowing digestion. Ficus carica is commonly known for its medicinal properties due to its various phytochemicals. In the present study, 10 phytochemicals present in F. carica compounds named, β-carotene, lutein, cyanidin-3-glucoside, gallic acid, luteolin, catechin, kaempferol, vanillic acid, peonidin-3-glucoside, and quercetin hydrate were taken to study their inhibition potential against pancreatic amylase and salivary amylase through molecular docking and molecular dynamics simulations. Further, density functional theory calculations are used to investigate the delocalization of electron density on the molecule as well as study ADME properties of the molecules take. A QSAR model has been developed using the binding energy obtained using molecular docking and thermodynamic parameters from DFT calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Siwat Pongpaiboon
- Neerja Modi School, Shipra Path, Mansarovar, Jaipur, Rajasthan, India
| | - Rohit Bhatia
- Ndeavours Research, Mansarovar, Jaipur, Rajasthan, India
| | | | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Modinagar, India
| | - Mansi Sagar
- Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Cobre ADF, Maia Neto M, de Melo EB, Fachi MM, Ferreira LM, Tonin FS, Pontarolo R. Naringenin-4'-glucuronide as a new drug candidate against the COVID-19 Omicron variant: a study based on molecular docking, molecular dynamics, MM/PBSA and MM/GBSA. J Biomol Struct Dyn 2024; 42:5881-5894. [PMID: 37394802 DOI: 10.1080/07391102.2023.2229446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to identify natural bioactive compounds (NBCs) as potential inhibitors of the spike (S1) receptor binding domain (RBD) of the COVID-19 Omicron variant using computer simulations (in silico). NBCs with previously proven biological in vitro activity were obtained from the ZINC database and analyzed through virtual screening, molecular docking, molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA), and molecular mechanics/generalized Born surface area (MM/GBSA). Remdesivir was used as a reference drug in docking and MD calculations. A total of 170,906 compounds were analyzed. Molecular docking screening revealed the top four NBCs with a high affinity with the spike (affinity energy <-7 kcal/mol) to be ZINC000045789238, ZINC000004098448, ZINC000008662732, and ZINC000003995616. In the MD analysis, the four ligands formed a complex with the highest dynamic equilibrium S1 (mean RMSD <0.3 nm), lowest fluctuation of the complex amino acid residues (RMSF <1.3), and solvent accessibility stability. However, the ZINC000045789238-spike complex (naringenin-4'-O glucuronide) was the only one that simultaneously had minus signal (-) MM/PBSA and MM/GBSA binding free energy values (-3.74 kcal/mol and -15.65 kcal/mol, respectively), indicating favorable binding. This ligand (naringenin-4'-O glucuronide) was also the one that produced the highest number of hydrogen bonds in the entire dynamic period (average = 4601 bonds per nanosecond). Six mutant amino acid residues formed these hydrogen bonds from the RBD region of S1 in the Omicron variant: Asn417, Ser494, Ser496, Arg403, Arg408, and His505. Naringenin-4'-O-glucuronide showed promising results as a potential drug candidate against COVID-19. In vitro and preclinical studies are needed to confirm these findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Moisés Maia Neto
- Department of Pharmacy, Fametro University Centre (UNIFAMETRO), Fortaleza-Ceará, Brazil
| | - Eduardo Borges de Melo
- Department of Pharmacy, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel-PR, Brazil
| | - Mariana Millan Fachi
- Pharmaceutical Sciences Postgraduate Programme, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Fernanda Stumpf Tonin
- H&TRC - Health & Technology Research Centre, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Roberto Pontarolo
- Department of Pharmacy, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Sundararajan P, Dharmaraj Rajaselvi D, Vivekananthan S, Priya Ramasamy S. In-silico method for elucidation of prodigiosin as PARP-1 inhibitor a prime target of Triple-negative breast cancer. Bioorg Chem 2023; 138:106618. [PMID: 37244231 DOI: 10.1016/j.bioorg.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) is found to be one of the life-threatening cancer. Poly (ADP-Ribose) Polymerase-1 (PARP-1) is overexpressed by those tumour cells, which become resistant to chemotherapies. Inhibition of PARP-1 has a considerable effect on treating TNBC. Prodigiosin is a valuable pharmaceutical compound that exhibits anticancer properties. The present study aims to virtually evaluate prodigiosin as a potent PARP-1 inhibitor using Molecular docking and Molecular Dynamics (MD) simulation studies. The PASS (Prediction of Activity Spectra for Substances) prediction tool evaluated the biological properties of prodigiosin. Then the drug-likeness and pharmacokinetic properties of prodigiosin were determined using Swiss-ADME software. It was suggested that prodigiosin obeyed Lipinski's rule of five and thus could act as a drug with good pharmacokinetic properties. Moreover, molecular docking was done with AutoDock 4.2 to identify the critical amino acids of the protein-ligand complex. It was indicated that prodigiosin has a docking score of -8.08 kcal/mol, which showed its effective interaction with crucial amino acid, His201A of PARP-1 protein. Further, MD simulation was performed using Gromacs software to validate the stability of the prodigiosin-PARP-1 complex. Prodigiosin was found to have good structural stability and affinity at the active site of PARP-1 protein. Additionally, PCA and MM-PBSA were calculated for the prodigiosin-PARP-1 complex, which revealed that prodigiosin has an excellent binding affinity towards PARP-1 protein. Prodigiosin can possibly be used as oral drug due to its PARP-1 inhibition through high binding affinity, structural stability, and receptor flexibility towards crucial amino acid residue His201A of PARP-1 protein. In-addition, in-vitro cytotoxicity, and apoptosis analysis of prodigiosin-treated TNBC cell line-MDA-MB-231 revealed that prodigiosin exhibited significant anticancer activity in 101.1 µg/mL concentration, when compared to commercially available synthetic drug cisplatin. Thus, prodigiosin could act as a potential candidate for treatment of TNBC than the commercially available synthetic drugs.
Collapse
Affiliation(s)
- Priya Sundararajan
- Department of Microbiology, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India
| | | | - Suseela Vivekananthan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India
| | - Shanmuga Priya Ramasamy
- Department of Microbiology, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India.
| |
Collapse
|
8
|
Yoosefian M, Dashti R, Mahani M, Montazer L, Mir A. A suitable drug structure for interaction with SARS-CoV-2 main protease between boceprevir, masitinib and rupintrivir; a molecular dynamics study. ARAB J CHEM 2023; 16:105051. [PMID: 37323221 PMCID: PMC10246938 DOI: 10.1016/j.arabjc.2023.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
In recent years, more than 200 countries of the world have faced a health crisis due to the epidemiological disease of COVID-19 caused by the SARS-CoV-2 virus. It had a huge impact on the world economy and the global health sector. Researchers are studying the design and discovery of drugs that can inhibit SARS-CoV-2. The main protease of SARS-CoV-2 is an attractive target for the study of antiviral drugs against coronavirus diseases. According to the docking results, binding energy for boceprevir, masitinib and rupintrivir with CMP are -10.80, -9.39, and -9.51 kcal/mol respectively. Also, for all investigated systems, van der Waals and electrostatic interactions are quite favorable for binding the drugs to SARS-CoV-2 coronavirus main protease, indicating confirmation of the complex stability.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | - Razieh Dashti
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohamad Mahani
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Leila Montazer
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P.O. Box 87317-51167, Iran
| |
Collapse
|
9
|
Srivastav AK, Jaiswal J, Kumar U. In silico bioprospecting of antiviral compounds from marine fungi and mushroom for rapid development of nutraceuticals against SARS-CoV-2. J Biomol Struct Dyn 2023; 41:1574-1585. [PMID: 34971338 DOI: 10.1080/07391102.2021.2023048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) affects human respiratory function that causes COVID-19 disease. COVID-19 has spread rapidly all over the world and became a pandemic within no time. Therefore, it is the need of hour to screen potential lead candidates from natural resources like edible mushrooms and marine fungi. These natural resources are very less explored till now and known to be the source for many medicinal compounds with several health benefits. These medicinal compounds can be easily exploited for the faster development of nutraceuticals for controlling SARS-CoV-2 infections. Our Insilico research suggests, bioactive compounds originating from mushroom and marine fungi shows strong potential to interact with ACE2 receptor or main protease of SARS-CoV-2, showing the inhibition activity towards the enzymatic protease. We performed a series of Insilico studies for the validation of our results, which includes Molecular docking, drug likeness property investigation by Swiss ADME tools, MD simulation, and thermodynamically stable free binding energy calculation. Overall, these results suggest that Ganodermadiol and Heliantriol F bioactive compounds originating from edible mushroom has strong potential to be developed as low-cost nutraceutical against SARS-CoV-2 viral infection. The drug candidate isolated from marine fungi and edible mushroom are highly unexplored for the development of potential alternative drug against SARS-CoV-2 virus with minimum side effects. Though our in silico studies of these compounds are showing a promising results against SARS-CoV-2 main protease and ACE2 receptor binding domain, the effectiveness of these bioactive compounds should be further validated by proper clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
10
|
Moharana M, Pattanayak SK, Khan F. Molecular recognition of bio-active triterpenoids from Swertia chirayita towards hepatitis Delta antigen: a mechanism through docking, dynamics simulation, Gibbs free energy landscape. J Biomol Struct Dyn 2023; 41:14651-14664. [PMID: 36856037 DOI: 10.1080/07391102.2023.2184173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
Medicinal plants the underpinning of indigenous herbal serve, are the possible source of key compounds for the development of new drugs. Hepatitis D, one of the most widespread infectious diseases associated with global public health issues. Therefore, we aim to screen natural compounds to find out potent inhibitor towards hepatitis delta antigen. Through ADMET investigation, we have screened twenty phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HDV protease which signifies the phytochemicals beta-amyrin, chiratenol, episwertenol and swertanone have a significant capability to bind with hepatitis D virus protein. The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, Hbond number, and principal component analysis through 100 ns MD simulations. Based on our principal component analysis, beta-amyrin, chiratenol, episwertenol and swertanone phytochemicals can be a potential drug candidates for inhibition of hepatitis D. The above observation is also supported by our Gibbs free energy landscape study. The potential therapeutic characteristics of the phytochemicals against hepatitis D inhibition offer additional support for the in vitro and in vivo studies in future.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
11
|
Adegbola PI, Fadahunsi OS, Ogunjinmi OE, Adegbola AE, Ojeniyi FD, Adesanya A, Olagoke E, Adisa AD, Ehigie AF, Adetutu A, Semire B. Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies. INFORMATICS IN MEDICINE UNLOCKED 2023; 37:101167. [PMID: 36686560 PMCID: PMC9837157 DOI: 10.1016/j.imu.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Concerned organizations and individuals are fully engaged in seeking appropriate measures towards managing Severe Acute Respiratory Syndrome Coronavirus 2 (SAR-CoV-2) infection because of the unprecedented economic and health impact. SAR-CoV-2 Main protease (SARS-CoV-2 Mpro) is unique to the survival and viability of the virus. Therefore, inhibition of Mpro can block the viral propagation. Thirty (30) derivatives were built by changing the glucosides in the Meta and para position of quercetin and isohamnetin. Molecular docking analysis was used for the screening of the compounds. Dynamics simulation was performed to assess the stability of the best pose docked complex. Molecular mechanics binding free energy calculation was done by Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA). Overall analysis showed that the compounds are allosteric inhibitors of SARS-CoV-2 Mpro. Dynamic simulation analysis established the stability of Mpro-ISM-1, Mpro-ISD-3, Mpro-IST-2, Mpro-QM-2, and Mpro-QD-6 complexes with a maximum of 7 hydrogen bonds involved in their interaction. The MMPBSA binding free energies for ISM-1, ISD-3, IST-2, QM-2, and QD-6 were -92.47 ± 9.06, -222.27 ± 32.5, 180.72 ± 47.92, 156.46 ± 49.88 and -93.52 ± 48.75 kcal/mol respectively. All the compounds showed good pharmacokinetic properties, while only ISM-1 inhibits hERG and might be cardio-toxic. Observations in this study established that the glucoside position indeed influenced the affinity for SARS-CoV-2 Mpro. The study also suggested the potentials of ISD-3, QM-2 and QD-6 as potent inhibitors of the main protease, further experimental and clinical studies are however necessary to validate and establish the need for further drug development processes. Therefore, future studies will be on the chemical synthesis of the compounds and investigation of the in-vitro inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Olumide Samuel Fadahunsi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oluwasayo Esther Ogunjinmi
- Department of Industrial Chemistry, Faculty of Natural and Applied Sciences, First Technical University, Ibadan, Nigeria
| | - Aanuoluwa Eunice Adegbola
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Fiyinfoluwa Demilade Ojeniyi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adetayo Adesanya
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Emmanuel Olagoke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Ayobami Damilare Adisa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeola Folasade Ehigie
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
12
|
Singh MB, Sharma R, Kumar D, Khanna P, Mansi, Khanna L, Kumar V, Kumari K, Gupta A, Chaudhary P, Kaushik N, Choi EH, Kaushik NK, Singh P. An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: A systematic review. J Infect Public Health 2022; 15:1326-1349. [PMID: 36288640 PMCID: PMC9579205 DOI: 10.1016/j.jiph.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
The first infection case of new coronavirus was reported at the end of 2019 and after then, the cases are reported in all nations across the world in a very short period. Further, the regular news of mutations in the virus has made life restricted with appropriate behavior. To date, a new strain (Omicron and its new subvariant Omicron XE) has brought fear amongst us due to a higher trajectory of increase in the number of cases. The researchers thus started giving attention to this viral infection and discovering drug-like candidates to cure the infections. Finding a drug for any viral infection is not an easy task and takes plenty of time. Therefore, computational chemistry/bioinformatics is followed to get promising molecules against viral infection. Molecular dynamics (MD) simulations are being explored to get drug candidates in a short period. The molecules are screened via molecular docking, which provides preliminary information which can be further verified by molecular dynamics (MD) simulations. To understand the change in structure, MD simulations generated several trajectories such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, and radius of gyration for the main protease (Mpro) of the new coronavirus (nCoV) in the presence of small molecules. Additionally, change in free energy for the formation of complex of Mpro of nCoV with the small molecule can be determined by applying molecular mechanics with generalized born and surface area solvation (MM-GBSA). Thus, the promising molecules can be further explored for clinical trials to combat coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Mansi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Vinod Kumar
- Special Centre for Nanoscience (SCNS), Jawaharlal Nehru University, New Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, New Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Preeti Chaudhary
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong-si 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| |
Collapse
|
13
|
Gu W, Zhao Y, Yang L, Du M, Li Q, Ren Z, Li X. A new perspective to improve the treatment of Lianhuaqingwen on COVID-19 and prevent the environmental health risk of medication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74208-74224. [PMID: 35635661 PMCID: PMC9148946 DOI: 10.1007/s11356-022-21125-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Lianhuaqingwen (LH), one traditional Chinese medicine (TCM), has been used to treat the coronavirus disease 2019 (COVID-19), but its ecotoxicity with potential human health security has not been well investigated. To overcome such adverse effects and improve its medication efficacy, an intelligent multi-method integrated dietary scheme, screening, and performance evaluation approach was developed. Thirteen LH compounds were selected, and the main protease (Mpro) was used as the potential drug target. Resulted information showed that the more compounds of LH added, the higher medication efficacy obtained using multi-method integrated screening system, expert consultation method, and molecular dynamics simulation. Pharmacodynamic mechanism analysis showed that low total energy and polar surface area of LH active compound (i.e., β-sitosterol) will contribute to the best therapeutic effect on COVID-19 using quantitative structure-activity relationships (QSAR) and sensitivity models. Additionally, when mild COVID-19 patients take LH with the optimum dietary scheme (i.e., β-lactoglobulin, α-lactalbumin, vitamin A, vitamin B, vitamin C, carotene, and vitamin E), the medication efficacy were significantly improved (23.58%). Pharmacokinetics and toxicokinetics results showed that LH had certain human health risks and ecotoxicity. This study revealed the multi-compound interaction mechanism of LH treatment on COVID-19, and provided theoretical guidance for improving therapeutic effect, evaluating TCM safety, and preventing human health risk.
Collapse
Affiliation(s)
- Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Luze Yang
- College of New Energy and Environment, Jilin University, Changchun, 130012 China
| | - Meijin Du
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Qing Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, China
| | - Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John’s, NL A1B 3X5 Canada
| |
Collapse
|
14
|
Sahoo R, Sahu P, Swargam S, Kumari I, Behera B. Repurposing small molecules of Tephrosia purpurea against SARS-CoV-2 main protease. J Biomol Struct Dyn 2022:1-12. [PMID: 35983619 DOI: 10.1080/07391102.2022.2112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Coronavirus infection is a communicable disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged as a global pandemic with deteriorating effect on the world's population. Main protease (Mpro) of SARS-CoV-2 plays a significant role in the viral replication, transcription and disease propagation as well as a potential candidate for drug discovery and development for COVID-19 infection. The current study employed state of art structure-based drug discovery to decipher the role of phytochemicals of Tephrosia purpurea against Mpro. Tephrosia purpurea is being used as a traditional medicinal plant for the treatment of cough, breathlessness and fever as per the Indian Materia Medica. Screening of the phytochemicals of Tephrosia purpurea against Mpro was performed using molecular docking approach to identify the top 5 hits (+)-tephrorin B, deguelin, vitamin p, lanceolarin and 3beta-hydroxy-20(29)-lupene with binding energy of -8.4, -8.1, -8.0, -7.8, and -7.8 kcal/mol, respectively. Furthermore, identified top 5 hits were subjected to drug-likeness and toxicity prediction as well as MM-GBSA calculation. Out of the five molecules four molecules were predicted not to comprise any mutagenic and carcinogenic effects. Top two molecules based on the drug-likeness properties for oral bio-availability were further analysed by molecular dynamics simulation at 100 ns timescale. It was observed from the dynamic behaviour of the two complexes that the addition of these molecules changed the conformation and stability of the apo protein; thus may act as inhibitors for Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rosaleen Sahoo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Parameswar Sahu
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education & Research, New Delhi, India
| | - Sandeep Swargam
- Genomics and Epidemiology Division, National Centre for Disease Control, Civil Lines, New Delhi, India
| | - Indu Kumari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Banshidhar Behera
- Department of Dravyaguna, Ayurvedic and Unani Tibbia College, New Delhi, India
| |
Collapse
|
15
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Chang CC, Hsu HJ, Wu TY, Liou JW. Computer-aided discovery, design, and investigation of COVID-19 therapeutics. Tzu Chi Med J 2022; 34:276-286. [PMID: 35912059 PMCID: PMC9333103 DOI: 10.4103/tcmj.tcmj_318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently the most serious public health threat faced by mankind. Thus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is being intensively investigated. Several vaccines are now available for clinical use. However, owing to the highly mutated nature of RNA viruses, the SARS-CoV-2 is changing at a rapid speed. Breakthrough infections by SARS-CoV-2 variants have been seen in vaccinated individuals. As a result, effective therapeutics for treating COVID-19 patients is urgently required. With the advance of computer technology, computational methods have become increasingly powerful in the biomedical research and pharmaceutical drug discovery. The applications of these techniques have largely reduced the costs and simplified processes of pharmaceutical drug developments. Intensive and extensive studies on SARS-CoV-2 proteins have been carried out and three-dimensional structures of the major SARS-CoV-2 proteins have been resolved and deposited in the Protein Data Bank. These structures provide the foundations for drug discovery and design using the structure-based computations, such as molecular docking and molecular dynamics simulations. In this review, introduction to the applications of computational methods in the discovery and design of novel drugs and repurposing of existing drugs for the treatments of COVID-19 is given. The examples of computer-aided investigations and screening of COVID-19 effective therapeutic compounds, functional peptides, as well as effective molecules from the herb medicines are discussed.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
17
|
Andrzejczyk J, Jovic K, Brown LM, Pascetta VG, Varga K, Vashisth H. Molecular interactions and inhibition of the SARS‐CoV‐2 main protease by a thiadiazolidinone derivative. Proteins 2022; 90:1896-1907. [PMID: 35567429 PMCID: PMC9347825 DOI: 10.1002/prot.26385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/17/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022]
Abstract
We report molecular interactions and inhibition of the main protease (MPro) of SARS‐CoV‐2, a key enzyme involved in the viral life cycle. By using a thiadiazolidinone (TDZD) derivative as a chemical probe, we explore the conformational dynamics of MPro via docking protocols and molecular dynamics simulations in all‐atom detail. We reveal the local and global dynamics of MPro in the presence of this inhibitor and confirm the inhibition of the enzyme with an IC50 value of 1.39 ± 0.22 μM, which is comparable to other known inhibitors of this enzyme.
Collapse
Affiliation(s)
- Jacob Andrzejczyk
- Department of Chemical Engineering University of New Hampshire Durham New Hampshire USA
| | - Katarina Jovic
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Logan M. Brown
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Valerie G. Pascetta
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Services University of New Hampshire Durham New Hampshire USA
| | - Harish Vashisth
- Department of Chemical Engineering University of New Hampshire Durham New Hampshire USA
| |
Collapse
|
18
|
Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q. 3 Biotech 2022; 12:87. [PMID: 35265451 PMCID: PMC8893057 DOI: 10.1007/s13205-022-03151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 12/26/2022] Open
Abstract
The Receptor Binding Domain (RBD) of SARS-CoV-2, located on the S1 subunit, plays a vital role in the virus binding and its entry into the host cell through angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, understanding the dynamic effects of mutants on the SARS-CoV-2 RBD is essential for discovering drugs to inhibit the virus binding and disrupt its entry into the host cells. A recent study reported a double mutant of SARS-CoV-2, L452R-E484Q, located in the RBD region. Thus, this study employed various computational algorithms and methods to understand the structural impact of both individual variants L452R, E484Q, and the double mutant L452R-E484Q on the native RBD of spike glycoprotein. The effects of the mutations on native RBD structure were predicted by in silico algorithms, which predicted changes in the protein structure and function upon the mutations. Subsequently, molecular dynamics (MD) simulations were employed to understand the conformational stability and functional changes on the RBD upon the mutations. The comparative results of MD simulation parameters displayed that the double mutant induces significant conformational changes in the spike glycoprotein RBD, which may alter its biological functions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03151-0.
Collapse
|
19
|
L-amino-acids as immunity booster against COVID-19: DFT, molecular docking and MD simulations. J Mol Struct 2022; 1250:131924. [PMID: 34803185 PMCID: PMC8590830 DOI: 10.1016/j.molstruc.2021.131924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022]
Abstract
There is great interest to explore the importance of different amino-acids on immunity of human. Immunity helps to protect us from the pathogenic infections. The amino-acids are being use to give energy and is also used as an important basic molecule for the making of cells, protecting cell and others. Still, a little information is known for their importance in the inhibition of main protease of SARS-CoV-2. As known, tens of billions of humans are infected due to the SARS-CoV-2 and about a million of deaths are reported due to it or COVID. As of now, no promising drug is available in the market to cure the patients from this infection. Even, the medicines beings used for the partial cure may have some side effects. Therefore, the focus is to explore the natural amino-acids against the Mpro of SARS-CoV-2 as using of amino-acids is not toxic to humans. In the present work, authors have studied the amino-acids using DFT calculations and then they were explored for their promising role in the inhibition of main protease of SARS-CoV-2 using molecular docking and molecular dynamics simulations. Out of the 20 amino-acids, arginine found to best against the main protease of SARS-CoV-2 using the molecular docking and the binding energy was -0.94 kcal/ mol. Further, molecular dynamics simulations for the main protease of SARS-CoV-2 with and without arginine was performed using the Amber and different thermodynamic parameters like ΔH and TΔS to get ΔG, comes out to be 2.74 kcal/mol. It is expected that arginine can boost the immunity.
Collapse
|
20
|
Raman APS, Kumari K, Jain P, Vishvakarma VK, Kumar A, Kaushik N, Choi EH, Kaushik NK, Singh P. In Silico Evaluation of Binding of 2-Deoxy-D-Glucose with Mpro of nCoV to Combat COVID-19. Pharmaceutics 2022; 14:135. [PMID: 35057031 PMCID: PMC8779518 DOI: 10.3390/pharmaceutics14010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 has threatened the existence of humanity andthis infection occurs due to SARS-CoV-2 or novel coronavirus, was first reported in Wuhan, China. Therefore, there is a need to find a promising drug to cure the people suffering from the infection. The second wave of this viral infection was shaking the world in the first half of 2021. Drugs Controllers of India has allowed the emergency use of 2-deoxy-D-glucose (2DG) in 2021 for patients suffering from this viral infection. The potentiality of 2-deoxy-D-glucose to intervene in D-glucose metabolism exists and energy deprivation is an effective parameter to inhibit cancer cell development. Once 2DG arrives in the cells, it becomes phosphorylated to 2-deoxy-D-glucose-6-phosphate (2-DG6P), a charged molecule expressively captured inside the cells. On the other hand, 2DG lacks the ability to convert into fructose-6-phosphate, resulting in a hampering of the activity of both glucose-6-phosphate isomerase and hexokinase, and finally causing cell death. Hence, the potential and effectiveness of 2DG with the main protease (Mpro) of novel coronavirus (nCoV) should be investigated using the molecular docking and molecular dynamics (MD) simulations. The ability of 2DG to inhibit the Mpro of nCoV is compared with 2-deoxyglucose (2DAG), an acyclic molecule, and 2-deoxy-D-ribose (2DR). The binding energy of the molecules with the Mpro of nCoV is calculated using molecular docking and superimposed analysis data is obtained. The binding energy of 2DG, 2DR and 2DAG was -2.40, -2.22 and -2.88 kcal/mol respectively. Although the molecular docking does not provide reliable information, therefore, the binding affinity can be confirmed by molecular dynamics simulations. Various trajectories such as Rg, RMSD, RMSF, and hydrogen bonds are obtained from the molecular dynamics (MD) simulations. 2DG was found to be a better inhibitor than the 2DAG and 2DR based on the results obtained from the MD simulations at 300 K. Furthermore, temperature-dependent MD simulations of the Mpro of nCoV with promising 2DG was performed at 295, 310 and 315 K, and the effective binding with the Mpro of nCoV occurred at 295 K. With the use of DFT calculations, optimized geometry and localization of electron density of the frontier molecular orbitals were calculated.
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110021, India; (A.P.S.R.); (V.K.V.)
- Department of Chemistry, Sri Ramasami Memorial (SRM) Institute of Science and Technology, Modinagar, Ghaziabad 231206, India;
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110078, India;
| | - Pallavi Jain
- Department of Chemistry, Sri Ramasami Memorial (SRM) Institute of Science and Technology, Modinagar, Ghaziabad 231206, India;
| | - Vijay Kumar Vishvakarma
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110021, India; (A.P.S.R.); (V.K.V.)
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India;
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong 18323, Korea;
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi 110021, India; (A.P.S.R.); (V.K.V.)
| |
Collapse
|
21
|
Aminah NS, Abdjan MI, Wardana AP, Kristanti AN, Siswanto I, Rakhman KA, Takaya Y. The dolabellane diterpenes as potential inhibitors of the SARS-CoV-2 main protease: molecular insight of the inhibitory mechanism through computational studies. RSC Adv 2021; 11:39455-39466. [PMID: 35492446 PMCID: PMC9044469 DOI: 10.1039/d1ra07584e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
An investigation has been carried out on natural products from dolabellane derivatives to understand their potential in inhibiting the SARS-CoV-2 main protease (3CLpro) using an in silico approach. Inhibition of the 3CLpro enzyme is a promising target in stopping the replication of the SARS-CoV-2 virus through inhibition of the subsite binding pocket. The redocking process aims to determine the 3CLpro active sites. The redocking requirement showed a good pose with an RMSD value of 1.39 Å. The combination of molecular docking and MD simulation shows the results of DD13 as a candidate which had a good binding affinity (kcal mol-1) to inhibit the 3CLpro enzyme activity. Prediction of binding free energy (kcal mol-1) of DD13 using the Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB/GBSA) approach shows the results ΔG bind(MM-GBSA): -52.33 ± 0.34 and ΔG bind(MM-PBSA): -43.52 ± 0.42. The key residues responsible for the inhibition mechanism are Hie41, Ser46, Met49, Asn142, Cys145, Hie163, Met165, and Gln189. Additionally, pharmacokinetic prediction recommended that DD13 had promising criteria as a drug candidate. The results demonstrated in this study provide theoretical information to obtain a potential inhibitor against the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga Indonesia
| | - Muhammad Ikhlas Abdjan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Ph.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga Komplek Kampus C UNAIR, Jl. Mulyorejo 60115 Surabaya Indonesia
| | - Andika Pramudya Wardana
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Ph.D. Student of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga Komplek Kampus C UNAIR, Jl. Mulyorejo 60115 Surabaya Indonesia
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga Indonesia
| | - Imam Siswanto
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga Surabaya 60115 Indonesia
- Bioinformatic Laboratory, UCoE Research Center for Bio-Molecule Engineering, Universitas Airlangga Surabaya Indonesia
| | | | | |
Collapse
|
22
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
23
|
Kumari K, Kumar A, Bahadur I, Singh P. Investigate the interaction of testosterone/progesterone with ionic liquids on varying the anion to combat COVID-19: Density functional theory calculations and molecular docking approach. J PHYS ORG CHEM 2021; 34:e4273. [PMID: 34511718 PMCID: PMC8420490 DOI: 10.1002/poc.4273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Hormones like testosterone and progesterone in the humans play significant role in the regulation of various biological processes like the body growth, reproduction, and others. In last two decades, researchers are using ionic liquids (ILs) extensively in different areas of sciences, and they are a novel class of compounds as well as their polarity can be tuned. ILs are multidisciplinary in nature and can be used in chemistry, materials science, chemical engineering, and environmental science. Further, ILs are being explored to increase the solubility of drugs or biological potential molecules. Testosterone and progesterone are found to be not very polar in nature; therefore, the authors attempt to increase the solubility of testosterone and progesterone via interaction with ILs. It was studied with density functional theory calculations using Gaussian, and an increase in the value of dipole moment is observed for the complex of testosterone/progesterone with the ILs in comparison of individual one. The optimization energy and other thermodynamic energies of the ILs (IL1-IL3), testosterone (T), testosterone-IL (T-IL1 to T-IL3), progesterone (P), and progesterone-ILs (P-IL1 to P-IL3) are found to be negative. Further, the change in free energy for the formation of complexes at room temperature is calculated. Further, the authors have investigated the synergistic effect of testosterone and progesterone against the main protease of new coronavirus using molecular docking. It is observed that the testosterone-IL1 {IL1-3-(2-hydroxyethyl)-1-methyl-1H-imidazol-3-ium 2,4,6-trinitrophenolate} is found to be prominent against the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya CollegeUniversity of DelhiNew DelhiIndia
| | - Ajay Kumar
- Department of ChemistryIndian Institute of TechnologyNew DelhiIndia
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural SciencesNorth‐West UniversityMmabathoSouth Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma CollegeUniversity of DelhiNew DelhiIndia
| |
Collapse
|
24
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
25
|
Vishvakarma VK, Singh MB, Jain P, Kumari K, Singh P. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations. Amino Acids 2021; 54:205-213. [PMID: 34807314 PMCID: PMC8607790 DOI: 10.1007/s00726-021-03098-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
COVID-19 has shaken all the countries across the globe and researchers are trying to find promising antiviral to cure the patients suffering from infection and can decrease the death. Even, different nations are using repurposing drugs to cure the symptoms and these repurposing drugs are hydroxychloroquine, remdesivir, and lopinavir, and recently, India has recently given the approval for the 2-deoxy-d-glucose for emergency purpose to cure the patients suffering from the COVID-19. Plitidepsin is a popular molecule and can be used in treatment of myeloma. Plitidepsin was explored by scientists experimentally against the COVID-19 and was given to the patient. It is found to be more a promising repurposing drug against the COVID-19 than the remdesivir. Therefore, there is a need to understand the interaction of plitidepsin with the main protease of SARS-CoV-2. Molecular docking of the plitidepsin against Mpro of SARS-CoV-2 was performed and the binding energy was found to be − 137.992 kcal/mol. Furthermore, authors have performed the molecular dynamics simulations of the main protease of SARS-CoV-2 in presence of plitidepsin at 300 and 325 K. It was found that the plitidepsin binds effectively with the main protease of SARS-CoV-2 at 300 K.
Collapse
Affiliation(s)
- Vijay Kumar Vishvakarma
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Pallavi Jain
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| |
Collapse
|
26
|
Vishvakarma VK, Pal S, Singh P, Bahadur I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J Mol Struct 2021; 1251:131965. [PMID: 34840349 PMCID: PMC8604630 DOI: 10.1016/j.molstruc.2021.131965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is drastically spread across the globe in a short period of time and affects the lives of billions. There is a need to find the promising drugs like candidates against the inhibition of novel corona virus or SARS-CoV-2. Herein, the interaction on sex hormones (testosterone and progesterone) with Mpro of SARS-CoV-2 was investigated with the help of molecular docking. The binding energy for the formation complex between the progesterone and testosterone with main protease of SARS-CoV-2 are -86.05 and -91.84 kcal/mol, respectively. From this, it can be understood that testosterone showed better binding affinity with Mpro of nCoV and thus, more inhibition of the main protease. Then, the binding was further studied using molecular dynamics simulations at different temperatures (300, 310 and 325) K. It has been observed that the formations of complex between the Mpro of nCoV with testosterone/ progesterone is better at 300 K than 310 and 325 K. Further, it is found that the more effective binding of testosterone with Mpro of nCoV is observed than the progesterone based on the RMSD, RMSF and H-bond trajectories. Results indicate the promising nature of testosterone towards the inhibition of Mpro of nCoV.
Collapse
Affiliation(s)
- Vijay Kumar Vishvakarma
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Shweta Pal
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| | - Indra Bahadur
- Chemistry Department, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|