1
|
Frömbgen T, Zaby P, Alizadeh V, Da Silva JLF, Kirchner B, Lourenço TC. Lessons Learned on Obtaining Reliable Dynamic Properties for Ionic Liquids. Chemphyschem 2025; 26:e202401048. [PMID: 39887879 PMCID: PMC12005134 DOI: 10.1002/cphc.202401048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Ionic liquids are nowadays investigated with respect to their use as electrolytes for high-performance energy storage materials. In this study, we provide a tutorial on how to calculate dynamic properties such as self-diffusion coefficients, ionic conductivities, transference numbers, as well as ion pair and ion cage dynamics, that all play a role in judging the applicability of ionic liquids as electrolytes. For the case of the ionic liquid[ C 2 C 1 Im ] [ NTf 2 ] ${[{\rm{C}}_2 {\rm{C}}_1 {\rm{Im}}][{\rm{NTf}}_2 ]}$ , we investigate the performance of different force fields. Amongst them are non-polarizable models employing unity charges, a charge-scaled version of a non-polarizable model, a polarizable model and another non-polarizable model with refined Lennard-Jones parameters. We also study the influence of the system size on the dynamic properties. While all studied force field models capture qualitatively correct trends, only the polarizable force field and the non-polarizable force field with refined Lennard-Jones parameters provide quantitative agreement to reference data, making the latter model very attractive for the reason of lower computational costs.
Collapse
Affiliation(s)
- Tom Frömbgen
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Paul Zaby
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Juarez L. F. Da Silva
- São Carlos Institute of ChemistryUniversity of São PauloP.O. Box 78013560-970São CarlosSPBrazil
| | - Barbara Kirchner
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
| | - Tuanan C. Lourenço
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstraße 4D-53115BonnGermany
- São Carlos Institute of ChemistryUniversity of São PauloP.O. Box 78013560-970São CarlosSPBrazil
| |
Collapse
|
2
|
Kastinen T, Batys P, Tolmachev D, Laasonen K, Sammalkorpi M. Ion-Specific Effects on Ion and Polyelectrolyte Solvation. Chemphyschem 2024; 25:e202400244. [PMID: 38712639 DOI: 10.1002/cphc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ion-specific effects on aqueous solvation of monovalent counter ions, Na+ ${^+ }$ , K+ ${^+ }$ , Cl- ${^- }$ , and Br- ${^- }$ , and two model polyelectrolytes (PEs), poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA) were here studied with ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations based on the OPLS-aa force-field which is an empirical fixed point-charge force-field. Ion-specific binding to the PE charge groups was also characterized. Both computational methods predict similar response for the solvation of the PEs but differ notably in description of ion solvation. Notably, AIMD captures the experimentally observed differences in Cl- ${^- }$ and Br- ${^- }$ anion solvation and binding with the PEs, while the classical MD simulations fail to differentiate the ion species response. Furthermore, the findings show that combining AIMD with the computationally less costly classical MD simulations allows benefiting from both the increased accuracy and statistics reach.
Collapse
Affiliation(s)
- Tuuva Kastinen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere University, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239, Krakow, Poland
| | - Dmitry Tolmachev
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076, Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076, Aalto, Finland
| |
Collapse
|
3
|
Shayestehpour O, Zahn S. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials. J Chem Theory Comput 2023; 19:8732-8742. [PMID: 37972596 PMCID: PMC10720642 DOI: 10.1021/acs.jctc.3c00944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
In recent years, deep eutectic solvents emerged as highly tunable and ecofriendly alternatives to common organic solvents and liquid electrolytes. In the present work, the ability of machine learning (ML) interatomic potentials for molecular dynamics (MD) simulations of these liquids is explored, showcasing a trained neural network potential for a 1:2 ratio mixture of choline chloride and urea (reline). Using the ML potentials trained on density functional theory data, MD simulations for large systems of thousands of atoms and nanosecond-long time scales are feasible at a fraction of the computational cost of the target first-principles simulations. The obtained structural and dynamical properties of reline from MD simulations using our machine learning models are in good agreement with the first-principles MD simulations and experimental results. Running a single MD simulation is highlighted as a general shortcoming of typical first-principles studies if the dynamic properties are investigated. Furthermore, velocity cross-correlation functions are employed to study the collective dynamics of the molecular components in reline.
Collapse
Affiliation(s)
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering, 04318 Leipzig, Germany
| |
Collapse
|
4
|
Simonin JP. Further reflections about the “Born” term used in thermodynamic models for electrolytes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Russo S, Bodo E. A polarisable force field for bio-compatible ionic liquids based on amino acids anions. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Stefano Russo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Bodo
- Department of Chemistry, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
6
|
Szabadi A, Schröder C. Recent Developments in Polarizable Molecular Dynamics Simulations of Electrolyte Solutions. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416521420035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polarizable molecular dynamics simulations are a fast progressing field in the scientific research of ionic liquids. The fundamentals of polarizable simulations, as well as their application to ionic liquids, were summarized in a review [Bedrov, D.; Piquemal, J.-P.; Borodin, O.; MacKerell, Jr., A. D.; Roux, B.; Schröder, C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940–7995] in 2019. Since then, new methods to treat intermolecular interaction of induced dipoles in these highly charged systems were developed. This concerns the damping of these interactions and additional charge transfer as well as the prediction of ionic materials with ultrahigh refractive indices. In addition to the progress of the polarizable force fields, also thermostats and barostats for polarizable simulations evolved recently.
Collapse
Affiliation(s)
- András Szabadi
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Yue K, Doherty B, Acevedo O. Comparison between Ab Initio Molecular Dynamics and OPLS-Based Force Fields for Ionic Liquid Solvent Organization. J Phys Chem B 2022; 126:3908-3919. [PMID: 35594504 DOI: 10.1021/acs.jpcb.2c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OPLS-based force fields (FFs) have been shown to provide accurate bulk-phase properties for a wide variety of imidazolium-based ionic liquids (ILs). However, the ability of OPLS to reproduce an IL solvent structure is not as well-validated given the relative lack of high-level theoretical or experimental data available for comparison. In this study, ab initio molecular dynamics (AIMD) simulations were performed for three widely used ILs: the 1-butyl-3-methylimidazolium cation with chloride, tetrafluoroborate, or hexafluorophosphate anions, that is, [BMIM][Cl], [BMIM][BF4], and [BMIM][PF6], respectively, as a basis for further assessment of two unique IL FFs: the ±0.8 charge-scaled OPLS-2009IL FF and the OPLS-VSIL FF. The OPLS-2009IL FF employs a traditional all-atom functional form, whereas the OPLS-VSIL FF was developed using a virtual site that offloads negative charge to inside the plane of the ring with careful attention given to reproducing hydrogen bonding. Detailed comparisons between AIMD and the OPLS FFs were made based on radial distribution functions (RDFs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) to examine cation-anion interactions and π+-π+ stacking between the imidazolium rings. While both FFs were able to correctly capture the general solvent structure of these popular ILs, the OPLS-VSIL FF quantitatively reproduced interaction distances more accurately. In addition, this work provides further insights into the different short- and long-range structure patterns of these popular ILs.
Collapse
Affiliation(s)
- Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Shayestehpour O, Zahn S. Ion Correlation in Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Polarizable Molecular Dynamics Simulations. J Phys Chem B 2022; 126:3439-3449. [PMID: 35500254 DOI: 10.1021/acs.jpcb.1c10671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, deep eutectic solvents (DESs) emerged as highly tunable and environmentally friendly alternatives to common ionic liquids and organic solvents. In this work, a polarizable model based on the CHARMM Drude polarizable force field is developed for a 1:2 ratio mixture of choline chloride/urea (reline) DES. To successfully reproduce the structure of the liquid as compared to first-principles molecular dynamics simulations, a damping factor was introduced to correct the observed over-binding between the chloride and the hydrogen bonding site of choline. Investigated radial distributions reveal the formation of hydrogen bonds between all the constituents of reline and similar interactions for chloride and urea's oxygen atoms, which could contribute to the melting point depression of the mixture. Predicted dynamic properties from our polarizable force field are in good agreement with experiments, showing significant improvements over nonpolarizable models. Similar to some ionic liquids, an oscillatory behavior in the velocity autocorrelation function of the anion is visible, which can be interpreted as a rattling motion of the lighter anion surrounded by the heavier cations. The obtained results for ionic conductivity of reline show some degree of correlated ion motion in this DES. However, a joint diffusion of ion pairs cannot be observed during the simulations.
Collapse
Affiliation(s)
- Omid Shayestehpour
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
9
|
Philippi F, Goloviznina K, Gong Z, Gehrke S, Kirchner B, Pádua AAH, Hunt PA. Charge transfer and polarisability in ionic liquids: a case study. Phys Chem Chem Phys 2022; 24:3144-3162. [PMID: 35040843 DOI: 10.1039/d1cp04592j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Kateryna Goloviznina
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Agílio A H Pádua
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Patricia A Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Kirchner B, Blasius J, Alizadeh V, Gansäuer A, Hollóczki O. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. J Phys Chem B 2022; 126:766-777. [PMID: 35034453 DOI: 10.1021/acs.jpcb.1c09092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.,Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| |
Collapse
|
11
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
Gaur A, Balasubramanian S. Liquid Ethylene Glycol: Prediction of Physical Properties, Conformer Population and Interfacial Enrichment with a Refined Non-Polarizable Force Field. Phys Chem Chem Phys 2022; 24:10985-10992. [DOI: 10.1039/d2cp00633b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Periodic density functional theory based molecular dynamics simulations confirm the fraction of molecules in neat liquid ethylene glycol with their central OCCO dihedral in the trans conformation to be 21%,...
Collapse
|
13
|
Maglia de Souza R, Karttunen M, Ribeiro MCC. Fine-Tuning the Polarizable CL&Pol Force Field for the Deep Eutectic Solvent Ethaline. J Chem Inf Model 2021; 61:5938-5947. [PMID: 34797679 DOI: 10.1021/acs.jcim.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polarizable force fields are gradually becoming a common choice for ionic soft matter, in particular, for molecular dynamics (MD) simulations of ionic liquids (ILs) and deep eutectic solvents (DESs). The CL&Pol force field introduced in 2019 is the first general, transferable, and polarizable force field for MD simulations of different types of DESs. The original formulation contains, however, some problems that appear in simulations of ethaline and may also have a broader impact. First, the originally proposed atomic diameter parameters are unbalanced, resulting in too weak interactions between the chlorides and the hydroxyl groups of the ethylene glycol molecules. This, in turn, causes an artificial phase separation in long simulations. Second, there is an overpolarization of chlorides due to strong induced dipoles that give rise to the presence of peaks and antipeaks at very low q-vector values (2.4 nm-1) in the partial components of the structure factors. In physical terms, this is equivalent to overestimated spatial nanoscale heterogeneity. To correct these problems, we adjusted the chloride-hydroxyl radial distribution functions against ab initio data and then extended the use of the Tang-Toennis damping function for the chlorides' induced dipoles. These adjustments correct the problems without losing the robustness of the CL&Pol force field. The results were also compared with the nonpolarizable version, the CL&P force field. We expect that the corrections will facilitate reliable use of the CL&Pol force field for other types of DESs.
Collapse
Affiliation(s)
- Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil
| |
Collapse
|