1
|
Ali S, Saokaew P, Aman A, Todsaporn D, Sanachai K, Krusong K, Hannongbua S, Wolschann P, Mahalapbutr P, Rungrotmongkol T. Enhancing solubility and stability of piperine using β-cyclodextrin derivatives: computational and experimental investigations. J Biomol Struct Dyn 2025; 43:2596-2609. [PMID: 38260962 DOI: 10.1080/07391102.2024.2305696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
Piperine (PP), a natural alkaloid found in black pepper, possesses significant bioactivities. However, its use in pharmaceutical applications is hindered by low water solubility and susceptibility to UV light degradation. To overcome these challenges, we investigated the potential of β-cyclodextrin (βCD) and its derivatives with dimethyl (DMβCD), hydroxy-propyl (HPβCD) and sulfobutyl-ether (SBEβCD) substitutions to enhance the solubility and stability of PP. This study employed computational and experimental approaches to examine the complexation between PP and βCDs. The results revealed the formation of two types of inclusion complexes: the P-form and M-form involving the insertion of piperidine moiety and the methylene-di-oxy-phenyl moiety, respectively. These complexes primarily rely on van der Waals interactions. Among the three derivatives, the PP/SBEβCD complex exhibited the highest stability followed by HPβCD, as attributed to maximum atom contacts and minimal solvent accessibility. Solubility studies confirmed the formation of inclusion complexes in a 1:1 ratio. Notably, the stability constant of the inclusion complex was approximately two-fold higher with SBEβCD and HPβCD compared to βCD. The DSC thermograms provided confirmation of the formation of the inclusion complex between the host and guest. These findings highlight the potential of βCD derivatives to effectively encapsulate PP, improving its solubility and presenting new opportunities for its pharmaceutical applications.
Collapse
Affiliation(s)
- Saba Ali
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phattharapawn Saokaew
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Duangjai Todsaporn
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Jung JH, Kim YJ, Yang SK, Jeong S, Holden JF, Seo DH, Park CS. The Small Cycloamylose (CA15) Synthesizing Properties of 4-α-Glucanotransferase from Hyperthermophilic Archaeon Pyrobaculum arsenaticum with Its Distinct Disproportionation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3546-3558. [PMID: 39884825 DOI: 10.1021/acs.jafc.4c08064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
4-α-Glucanotransferase (4-α-GTase, EC 2.4.1.25) facilitates the transfer of α-1,4-linked glucan to another acceptor molecule. This enzyme is widely used during starch modification to produce unique materials, such as thermoreversible gel and cyclic glucan. Because most industrial processing of starch is conducted at elevated temperatures, hyperthermophilic enzymes have received considerable attention. However, only a few of the 4-α-GTases in the glycoside hydrolase family 77 have been isolated from hyperthermophilic archaea. Here, we report for the first time the cycloamylose-forming properties of an archaeal 4-α-GTase (ParGT) isolated from Pyrobaculum arsenaticum. ParGT exhibited optimal activity at pH 6.0 and 95 °C. In particular, ParGT can synthesize small cycloamyloses (CA15-18) with unique disproportionation patterns based on its low transglycosylation activity. Structural modeling with long-chain maltooligosaccharides revealed distinct amino acid residues at the acceptor and second acarbose-binding sites of ParGT. Mutations at Y322 and P231 at the acceptor binding site reduced the disproportionation activity for long-chain maltooligosaccharides, whereas E55 at the second acarbose-binding site influenced the cycloamylose size by affecting the positioning of the 460s loop. These findings provide valuable insights into the structural features and catalytic properties of hyperthermophilic archaeal 4-α-GTase, enabling future modifications of enzymes to improve their capacity to alter starch in diverse biotechnological processes.
Collapse
Affiliation(s)
- Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seul-Ki Yang
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Kim S. Protection of α-Tocopherol from UV-Induced Degradation by Encapsulation into Zein Nanoparticles. Molecules 2024; 29:3911. [PMID: 39202990 PMCID: PMC11356990 DOI: 10.3390/molecules29163911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamin E is a fat-soluble vitamin with several forms. Among these, α-tocopherol (TOC) is preferentially absorbed and accumulated in humans. In the body, it acts as an antioxidant, helping to protect cells from the damage caused by free radicals. It is an organic chemical compound that undergoes degradation upon irradiation with UV light. To protect this bioactive chemical compound from UV light degradation, encapsulation was carried out using zein as a shell material. Due to the unique phase diagram of TOC in aqueous ethanol, the encapsulation efficiency was >99%. The size of encapsulated particles was ~300 nm or smaller, and the thickness of the shell wall was ~30 nm. The presented procedure offers the most simple and efficient encapsulation process that yields edible products. The investigation of the irradiation effect of UV on TOC revealed that the encapsulation effectively blocks UV light and prevents TOC from being degraded. The presented procedure offers an instantaneous and highly efficient encapsulation process, which yields edible products.
Collapse
Affiliation(s)
- Sanghoon Kim
- Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
4
|
Vergara D, López O, Sanhueza C, Chávez-Aravena C, Villagra J, Bustamante M, Acevedo F. Co-Encapsulation of Curcumin and α-Tocopherol in Bicosome Systems: Physicochemical Properties and Biological Activity. Pharmaceutics 2023; 15:1912. [PMID: 37514098 PMCID: PMC10383532 DOI: 10.3390/pharmaceutics15071912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared with DPPC, DHPC, cur, and α-toc (cur/α-toc-bicelles). Liposomal vesicles loading cur/α-toc-bicelles were prepared with Lipoid P-100 and cholesterol-forming cur/α-toc-bicosomes. Three cur/α-toc-bicosomes were evaluated using different total lipid percentages (12, 16, and 20% w/v). The results indicated that formulations manage to solubilize cur and α-toc in homogeneous bicelles < 20 nm, while the bicosomes reaches 303-420 nm depending on the total lipid percentage in the systems. Bicosomes demonstrated high-encapsulation efficiency (EE) for cur (56-77%) and α-toc (51-65%). The loading capacity (LC) for both antioxidant compounds was 52-67%. In addition, cur/α-toc-bicosomes decreased the lipid oxidation by 52% and increased the antioxidant activity by 60% compared to unloaded bicosomes. The cell viability of these cur/α-toc-bicosomes was >85% in fibroblasts (3T3L1/CL-173™) and ≥65% in keratinocytes (Ha-CaT) and proved to be hematologically compatible. The cur/α-toc-bicelles and cur/α-toc-bicosomes inhibited the growth of C. albicans in a range between 33 and 76%. Our results propose bicosome systems as a novel carrier able to co-encapsulate, solubilize, protect, and improve the delivery performance of antioxidant molecules. The relevance of these findings is based on the synergistic antioxidant effect of its components, its biocompatibility, and its efficacy for dermal tissue treatment damaged by oxidative stress or by the presence of C. albicans. However, further studies are needed to assess the efficacy and safety of cur/α-toc bicosomes in vitro and in vivo.
Collapse
Affiliation(s)
- Daniela Vergara
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Claudia Sanhueza
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Catalina Chávez-Aravena
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - José Villagra
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
5
|
Bhardwaj VK, Purohit R. A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohydr Polym 2023; 310:120729. [PMID: 36925262 DOI: 10.1016/j.carbpol.2023.120729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Formononetin, a naturally occurring isoflavone exhibits a wide range of therapeutic applications including antioxidant, anti-tumor, antiviral, anti-diabetic and neuroprotective activities. However, the low hydro-solubility of formononetin has limited its prospective use in cosmetic, neutraceutical and pharmaceutical industries. Cyclodextrins (CDs), especially β-CD and its derivatives have emerged as promising agents to improve the water solubility of poorly hydrosoluble compounds by the formation of inclusion complexes. We employed multiscale (1000 ns) explicit solvent and umbrella sampling molecular dynamics (MD) simulations to study the interactions and thermodynamic parameters of inclusion complex formation between formononetin and five most commonly used β-CD derivatives. Classical MD simulations revealed two possible binding conformations of formononetin inside the central cavity of hydroxypropyl-β-CD (HP-β-CD), randomly methylated-β-CD (ME-β-CD), and sulfobutylether-β-CD (SBE-β-CD). The binding conformation with the benzopyrone ring of formononetin inside the central cavity of β-CD derivatives was more frequent than the phenyl group occupying the hydrophobic cavity. These interactions were supported by a variety of non-bonded contacts including hydrogen bonds, pi-lone pair, pi-sigma, and pi-alkyl interactions. Formononetin showed favorable end-state MD-driven thermodynamic binding free energies with all the selected β-CD derivatives, except succinyl-β-CD (S-β-CD). Furthermore, umbrella sampling simulations were used to investigate the interactions and thermodynamic parameters of the host-guest inclusion complexes. The SBE-β-CD/formononetin inclusion complex showed the lowest binding energy signifying the highest affinity among all the selected host-guest inclusion complexes. Our study could be used as a standard for analyzing and comparing the ability of different β-CD derivatives to enhance the hydro-solubility of poorly soluble molecules.
Collapse
Affiliation(s)
- Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
6
|
Sangkhawasi M, Kerdpol K, Ismail A, Nutho B, Hanpiboon C, Wolschann P, Krusong K, Rungrotmongkol T, Hannongbua S. In Vitro and In Silico Study on the Molecular Encapsulation of α-Tocopherol in a Large-Ring Cyclodextrin. Int J Mol Sci 2023; 24:ijms24054425. [PMID: 36901859 PMCID: PMC10002136 DOI: 10.3390/ijms24054425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.
Collapse
Affiliation(s)
- Mattanun Sangkhawasi
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khanittha Kerdpol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abbas Ismail
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chonnikan Hanpiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter Wolschann
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Kuakarun Krusong
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (S.H.); Tel.: +66-2218-5426 (T.R.); +66-8163-61957 (S.H.)
| |
Collapse
|
7
|
Suksiri P, Sansanaphongpricha K, Muangsin N, Krusong K. Development of positively-charged cycloamylose, CAQ as efficient nanodelivery system for siRNA. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Younis MM, Ayoub IM, Mostafa NM, El Hassab MA, Eldehna WM, Al-Rashood ST, Eldahshan OA. GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070918. [PMID: 35406898 PMCID: PMC9002779 DOI: 10.3390/plants11070918] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/05/2023]
Abstract
Today, skin care products and cosmetic preparations containing natural ingredients are widely preferred by consumers. Therefore, many cosmetic brands are encouraged to offer more natural products to the market, such as plant extracts that can be used for their antiaging, antiwrinkle, and depigmentation properties and other cosmetic purposes. In the current study, the volatile constituents of the hexane-soluble fraction of a Stenocarpus sinuatus (family Proteaceae) leaf methanol extract (SSHF) were analyzed using GC/MS analysis. Moreover, the antiaging activity of SSHF was evaluated through in vitro studies of anti-collagenase, anti-elastase, anti-tyrosinase, and anti-hyaluronidase activities. In addition, an in silico docking study was carried out to identify the interaction mechanisms of the major compounds in SSHF with the active sites of the target enzymes. Furthermore, an in silico toxicity study of the identified compounds in SSHF was performed. It was revealed that vitamin E (α-tocopherol) was the major constituent of SSHF, representing 52.59% of the extract, followed by γ-sitosterol (8.65%), neophytadiene (8.19%), β-tocopherol (6.07%), and others. The in vitro studies showed a significant inhibition by SSHF of collagenase, elastase, tyrosinase, and hyaluronidase, with IC50 values of 60.03, 177.5, 67.5, and 38.8 µg/mL, respectively, comparable to those of the positive controls epigallocatechin gallate (ECGC, for collagenase, elastase, hyaluronidase) and kojic acid (for tyrosinase). Additionally, the molecular docking study revealed good acceptable binding scores of the four major compounds, comparable to those of ECGC and kojic acid. Besides, the SSHF identified phytoconstituents showed no predicted potential toxicity nor skin toxicity, as determined in silico. In conclusion, the antiaging potential of SSHF may be attributed to its high content of vitamin E in addition to the synergetic effect of other volatile constituents. Thus, SSHF could be incorporated in pharmaceutical skin care products and cosmetics after further studies.
Collapse
Affiliation(s)
- Mai M. Younis
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Iriny M. Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt;
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Omayma A. Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; (M.M.Y.); (I.M.A.); (N.M.M.)
- Correspondence:
| |
Collapse
|
9
|
Krusong K, Ismail A, Wangpaiboon K, Pongsawasdi P. Production of Large-Ring Cyclodextrins by Amylomaltases. Molecules 2022; 27:molecules27041446. [PMID: 35209232 PMCID: PMC8875642 DOI: 10.3390/molecules27041446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Amylomaltase is a well-known glucan transferase that can produce large ring cyclodextrins (LR-CDs) or so-called cycloamyloses via cyclization reaction. Amylomaltases have been found in several microorganisms and their optimum temperatures are generally around 60–70 °C for thermostable amylomaltases and 30–45 °C for the enzymes from mesophilic bacteria and plants. The optimum pHs for mesophilic amylomaltases are around pH 6.0–7.0, while the thermostable amylomaltases are generally active at more acidic conditions. Size of LR-CDs depends on the source of amylomaltases and the reaction conditions including pH, temperature, incubation time, and substrate. For example, in the case of amylomaltase from Corynebacterium glutamicum, LR-CD productions at alkaline pH or at a long incubation time favored products with a low degree of polymerization. In this review, we explore the synthesis of LR-CDs by amylomaltases, structural information of amylomaltases, as well as current applications of LR-CDs and amylomaltases.
Collapse
Affiliation(s)
- Kuakarun Krusong
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
- Correspondence: ; Tel.: + 66-(0)2-218-5413
| | - Abbas Ismail
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Karan Wangpaiboon
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand; (A.I.); (K.W.)
| | - Piamsook Pongsawasdi
- Starch and Cyclodextrin Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330, Thailand;
| |
Collapse
|