1
|
Hong Q, Zhao L, Lin F, Tan N, You X, Lu B, Huang B, Lv J, Chen Y, Tang L. Synthesis of Guanine/Vermiculite Two-Dimensional Nanocomposites for Wireless Humidity Sensing in Nut Storage Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58734-58745. [PMID: 38055937 DOI: 10.1021/acsami.3c13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Two-dimensional (2D) nanostructures have the advantages of high specific surface area, easy surface functionalization, abundant active sites, and good compatibility with device integration and can be assembled into three-dimensional structures, which are key to the development of high-performance gas sensors. In this study, 2D vermiculite (VMT) nanosheets and guanine (G), two renewable resources with unique chemical structures, were organically combined to fully use the specificity of their molecular structures and functional activities. Driven by the regulation of 2D VMT nanosheets, guanine/vermiculite (G/VMT)-based 2D nanocomposites with controllable pore structure, multiple binding sites, and unobstructed mass transfer were designed and synthesized. The G/VMT nanocomposite material was used as a quartz crystal microbalance (QCM) electrode-sensitive film material to build a QCM-based humidity sensor. G/VMT-based QCM humidity sensor had good logarithmic linear relation (0.9971), high sensitivity (24.49 Hz/% relative humidity), low hysteresis (1.75% RH), fast response/recovery time (39/6 s), and good stability. Furthermore, with a QCM sensor and a specially designed wireless circuit, a wireless humidity detection system transmitting via Wi-Fi allows real-time monitoring of nut storage. This study presents an environmentally friendly, high-performance, miniature 2D nanocomposite sensor strategy for real-time monitoring.
Collapse
Affiliation(s)
- Qiqi Hong
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Lan Zhao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fujian 350108, China
| | - Ningning Tan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Xinda You
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Beili Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Biao Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Jianhua Lv
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Yandan Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| | - Lirong Tang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
| |
Collapse
|
2
|
Tariq MS, Imran M, Ud Din S, Murtaza B, Naeem MA, Amjad M, Shah NS, Khalid MS, Abdel-Maksoud MA, Alfuraydi AA, AbdElgawad H. Magnetic nanocomposite of maize offal biomass for effective sequestration of Congo red and methyl orange dyes from contaminated water: modeling, kinetics and reusability. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:975-992. [PMID: 37968930 DOI: 10.1080/15226514.2023.2280047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.
Collapse
Affiliation(s)
- Muhammad Salman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Salah Ud Din
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Shen T, Ji Y, Mao S, Han T, Zhao Q, Wang H, Gao M. "Functional connector" strategy on tunable organo-vermiculites: The superb adsorption towards Congo Red. CHEMOSPHERE 2023; 339:139658. [PMID: 37506892 DOI: 10.1016/j.chemosphere.2023.139658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
With the increasingly worldwide concentration of environmental pollution, exploiting cost-effective adsorbents has been a research hotspot. Here we introduce novel "functional connector" amide-containing gemini surfactants (LDAB, LDAPP, LDAMP and LDABP) and apply to modify Na-vermiculite (Na-Vt) for Congo red (CR) removal. Chain amide as the functional connector in the modifier, increases 6.9 times of CR uptake than traditional organo-Vts, which is further enhanced by tunning the functional group of modifier spacers. Superb uptake of CR on organo-Vts reaches 1214.05, 1375.47 and 1449.80 mg/g, and the removal efficiencies achieve 80.94%, 91.70% and 96.65% on LDAB-Vt, LDAPP-Vt and LDAMP-Vt, respectively. Notably, the maximum experimental adsorption capacity of LDAPP-Vt is 1759.64 mg/g. These experimental values are among the highest reported CR adsorbents. A combination experimental and theoretical analysis is conducted to unveil the structure-adsorptivity relationship: (i) Adsorptivity enhancement of organo-Vts is more effectively by regulating functional chains than the functional spacer. (ii) para-substituted aromatic spacers own the best adsorptive configuration and strongest stability for π-π interaction. (iii) π-π interaction provided by isolated aromatic ring is stronger than biphenyl, whose steric hindrance depresses the adsorptivity. Results in this study not only explain a new "functional connector" strategy to Vt-based adsorbents, but also provide a practical designing strategy for organic adsorbents characterized with high uptake capacity.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Shanshan Mao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Tong Han
- PetroChina North East Chemical & Marketing Company, Shenyang, 110033, PR China
| | - Qing Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, PR China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, PR China.
| |
Collapse
|
4
|
Mao S, Shen T, Zhao Q, Zhu S, Han T, Jin X, Ding F, Wang H, Gao M. A range of bifunctional vermiculite-based adsorbents for simultaneous removal of Congo red and permanganate. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Tian Y, Yin Y, Jia Z, Lou H, Zhou H. One-pot preparation of magnetic nitrogen-doped porous carbon from lignin for efficient and selective adsorption of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14943-14958. [PMID: 36161557 DOI: 10.1007/s11356-022-23077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Organic pollutants pose a serious threat to water environment, thus it is essential to develop high-performance adsorbent to remove them from wastewater. Herein, nitrogen-doped magnetic porous carbon (M-PLAC) with three-dimensional porous structure was synthesized from lignin to adsorb methylene blue (MB) and tetracycline (TC) in wastewater. The calculated equilibrium adsorption amount by M-PLAC for MB and TC was 645.52 and 1306.00 mg/g, respectively. The adsorption of MB and TC on M-PLAC conformed to the pseudo-second-order kinetic model. The removal of MB by M-PLAC showed fast and efficient characteristics and exhibited high selectivity for TC in a binary system. In addition, M-PLAC was suitable for a variety of complex water environments and had good regeneration performance, demonstrating potential advantages in practical wastewater treatment. The organic pollutant adsorption by M-PLAC was attributed to electrostatic interaction, hole filling effect, hydrogen bonding, and the π-π interaction.
Collapse
Affiliation(s)
- Yuxin Tian
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanbo Yin
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuoyu Jia
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510641, China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
6
|
Gong J, Wang T, Zhang W, Han L, Gao M, Chen T, Shen T, Ji Y. Organo-Vermiculites Modified by Aza-Containing Gemini Surfactants: Efficient Uptake of 2-Naphthol and Bromophenol Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3636. [PMID: 36296825 PMCID: PMC9609671 DOI: 10.3390/nano12203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
To explore the effect of spacer structure on the adsorption capability of organo-vermiculites (organo-Vts), a series of aza-containing gemini surfactants (5N, 7N and 8N) are applied to modify Na-vermiculite (Na-Vt). Large interlayer spacing, strong binding strength and high modifier availability are observed in organo-Vts, which endow them with superiority for the adsorption of 2-naphthol (2-NP) and bromophenol blue (BPB). The maximum adsorption capacities of 5N-Vt, 7N-Vt and 8N-Vt toward 2-NP/BPB are 142.08/364.49, 156.61/372.65 and 146.50/287.90 mg/g, respectively, with the adsorption processes well fit by the PSO model and Freundlich isotherm. The quicker adsorption equilibrium of 2-NP than BPB is due to the easier diffusion of smaller 2-NP molecules into the interlayer space of organo-Vts. Moreover, stable regeneration of 7N-Vt is verified, with feasibility in the binary-component system that is demonstrated. A combination of theoretical simulation and characterization is conducted to reveal the adsorption mechanism; the adsorption processes are mainly through partition processes, electrostatic interaction and functional interactions, in which the spacer structure affects the interlayer environment and adsorptive site distribution, whereas the adsorbate structure plays a role in the diffusion process and secondary intermolecular interactions. The results of this study demonstrate the versatile applicability of aza-based organo-Vts targeted at the removal of phenols and dyes as well as provide theoretical guidance for the structural optimization and mechanistic exploration of organo-Vt adsorbents.
Collapse
Affiliation(s)
- Jianchao Gong
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Tingting Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Innovation Laboratory of Materials for Energy and Environment Technologies, Department of Physics, College of Science, Tibet University, Lhasa 850000, China
| | - Wei Zhang
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Lin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Innovation Laboratory of Materials for Energy and Environment Technologies, Department of Physics, College of Science, Tibet University, Lhasa 850000, China
| | - Mingxiao Gao
- Anshan No. 1 Middle School, Anshan 114051, China
| | - Tianen Chen
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Tao Shen
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Yaxiong Ji
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
7
|
Ding F, Shen T, Zhao Q, Jin X, Mao S, Gao M. Series of bis-morpholinium-based organo-Vts for the removal of anionic dyes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Tran HV, Le TD. Graphene Oxide‐Based Adsorbents for Organic Dyes Removal from Contaminated Water: A Review. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hoang Vinh Tran
- Hanoi University of Science and Technology Inorganic Chemistry 1st Dai Co Viet Road 100000 Hanoi VIET NAM
| | - Thu D. Le
- Hanoi University of Science and Technology School of Chemical Engineering VIET NAM
| |
Collapse
|
9
|
TiO2 nanoarrays modification by a novel Cobalt-heteroatom doped graphene complex for photoelectrochemical water splitting: An experimental and theoretical study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Şimşek S, Kaya S, Mine Şenol Z, İbrahim Ulusoy H, Katin K, Özer A, Altunay N, Brahmia A. Theoretical and experimental insights about the adsorption of uranyl ion on a new designed Vermiculite-Polymer composite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|