1
|
Zhou C, Yao Y, Guo X, Yang B. Nano fluorescent probe based on acyclic cucurbituril for Fe 3+ detection in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125914. [PMID: 39986251 DOI: 10.1016/j.saa.2025.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Fe3+ is an essential element for the human body, and its regulation in cells is associated with serious diseases. Therefore, the ability to detect Fe3+ in living cells is highly valuable. In this study, we successfully developed a novel supramolecular fluorescent probe (ACB-TPE), based on an acyclic cucurbituril and tetraphenylethylene derivatives. The ACB-TPE probe retains the aggregation-induced emission property of TPE, and it can achieve highly specific recognition of Fe3+ ions without interference from other metal ions, anions, or amino acids. The binding constant between ACB-TPE and Fe3+ is 1.42 × 105, and the detection limit is 8.36 × 10-8 M. Additionally, the probe displayed a high response speed to Fe3+. Importantly, the ACB-TPE probe exhibited strong fluorescence emission in living cells, enabling the detection of Fe3+ through bioimaging. These make it a valuable tool for studying the role of Fe3+ regulation in cellular processes and disease pathogenesis. A significant contribution to the field of cellular metal ion detection and regulation is made by the probe's unique properties and applications.
Collapse
Affiliation(s)
- Chao Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yi Yao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xue Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
2
|
Patel RS, Bhadoriya RJ, Modi KM, Vora MA, Patel MN, Parekh HM. Selective detection of Fe 3+ via fluorescent in real sample using aminoanthraquinone resorcin[4]arene-based receptors with logic gate application. Talanta 2025; 285:127322. [PMID: 39642608 DOI: 10.1016/j.talanta.2024.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Resorcin[4]arene based fluorescent sensors RES-AAQ containing eight anthraquinone groups as binding sites, were developed for very accurate and sensitive detection of Fe3+ metal ion. The motivation for this study lies in the need for advanced sensing techniques for precisely identifying Fe3+ ions. Due to its unique redox properties, Fe3+ plays a crucial role in biological processes, environmental remediation, medical diagnostics, and advanced detection methods. The sensors were extensively characterized using FT-IR, 1H NMR, 13C NMR, and ESI-MS techniques. The absorption spectra revealed significant interactions between RES-AAQ and Fe3+ ions. Fluorescence quenching was observed due to Photoinduced electron transfer (PET). The quenching process was systematically analyzed using Stern-Volmer analysis. Each sensor (L1, L2, L3, L4) demonstrated remarkable detection limits for Fe3+ ions (10.51 nM, 10.48 nM, 10.49 nM, 10.47 nM, respectively) along with substantial binding affinities (binding constants: 9.07x109 M-1, 1.19x109 M-1, 1.49x109 M-1 and 1.03x109 M-1 for L1, L2, L3, and L4, respectively). Traditional, Fe3+ detection methods often suffer from limitations such as complexity, lack of sensitivity, or interference from other metal ions. This research offers highly sensitive fluorescent sensors for Fe3+ detection with potential applications in human blood serum and tap water. Molecular docking, DFT studies, and ESI-MS investigation have been employed to gain insights into the binding interactions between the molecules. The low detection limits, high binding affinity, and real-world applicability highlight the significant advantages of developed sensors compared to existing methods. Additionally, a combinatorial logic gate was constructed to facilitate a proper understanding of the working principle of RES-AAQ.
Collapse
Affiliation(s)
- Ronak S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Rubi J Bhadoriya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Krunal M Modi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Manoj A Vora
- Department of Chemical Engineering, Nirma Univesity, Gota, Ahmedabad, 382481, Gujarat, India; Department of Chemistry, Faculty of Science, Gokul Global University, Siddhpur, 384151, Gujarat. India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Hitesh M Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India.
| |
Collapse
|
3
|
Desai V, Panchal M, Parikh J, Modi K, Vora M, Panjwani F, Jain VK. Fluorescence Quenching and the Chamber of Nitroaromatics: A Dinaphthoylated Oxacalix[4]arene's (DNOC) Adventure Captured through Computational and Experimental Study. J Fluoresc 2025; 35:121-130. [PMID: 37995071 DOI: 10.1007/s10895-023-03505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.
Collapse
Affiliation(s)
- Vishv Desai
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, Gujarat, India.
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, 384012, Mehsana, Gujarat, India
| | - Krunal Modi
- Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India.
| | - Manoj Vora
- Chemical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
4
|
S SP, Sr S. Sustainable carbon dots from Borreria hispida: enhanced colorimetric sensing of Fe 3+ ions and biological applications in live cell imaging. RSC Adv 2024; 14:17471-17479. [PMID: 38818362 PMCID: PMC11137498 DOI: 10.1039/d4ra01686f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
This study presents the synthesis of advanced nanomaterials derived from the hedge-grown herbal plant, Borreria hispida, and explores their environmental and biological applications. Using a one-step hydrothermal synthesis method, carbon dots derived from Borreria hispida (BHCD) were fabricated and thoroughly characterized through XRD, TEM, FTIR, CHNS, UV-visible, and PL spectroscopy analyses. Under UV illumination, these plant-based carbon dots demonstrated exceptional water solubility, notable photo stability, and a high quantum yield of 40.8%. The average particle size of BHCD was absorbed around 0.5 to 3.5 nm, contributing to superior selectivity and sensitivity in detecting Fe3+ ions, with a limit of detection of 1.2 × 10-6 M. Investigation into the sensing mechanism revealed a binding model wherein two carbon atom molecules bind to one Fe3+ atom in a 2 : 1 ratio for BHCDs and Fe3+ interactions. Additionally, the effectiveness of the developed fluorescent probe for Fe3+ detection was validated using real water samples from ponds and lakes, highlighting its potential for environmental monitoring applications. Furthermore, the biological effects of BHCD were evaluated through cytotoxic assays, demonstrating significant inhibitory effects on MCF7 breast cancer cell lines, with a maximum cell viability of 60%. This research underscores the multifaceted potential of BHCD in environmental monitoring and biomedical applications.
Collapse
Affiliation(s)
- Shanmuga Priya S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tami Nadu India
| | - Suseem Sr
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tami Nadu India
| |
Collapse
|
5
|
Vora M, Dey S, Kongor A, Panchal M, Verma A, Trivedi P, Sindhav G, Jain V. CHEF induced fluorometric sensing of Al3+ and picric acid with bioimaging in human peripheral blood mononuclear cell. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Mancuso F, Crisafulli D, Milone M, Irto A, Cigala RM, Lando G, Pisagatti I, Notti A, Gattuso G. Tetracationic-to-dianionic tetraamino-dihydroxy-tetraoxacalix[4]arene: A paraquat receptor for all seasons. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Configurable fluorescent constructs for detection and discrimination of fluoride and biological phosphates. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|