1
|
Aydoğan Ahbab M, Taşteki L I, Pınar EG, Özbek P, Türkoğlu EA. Multi-approach study on diethylhexyl phthalate and monoethylhexyl phthalate binding to lysozyme: In silico, bioactivity and surface plasmon resonance analyses. Toxicol Lett 2025; 408:54-64. [PMID: 40246214 DOI: 10.1016/j.toxlet.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Diethylhexyl phthalate (DEHP) and its metabolite monoethylhexyl phthalate (MEHP) are recognized as endocrine disruptors with significant toxicological effects on various human physiological systems. While previous research has explored phthalate-protein interactions, there is a notable gap in studies focusing on the interaction between these endocrine disruptors and lysozyme (LZM), a critical component of the immune system. This study aimed to investigate the interactions of DEHP and MEHP with chicken egg white lysozyme (CEWLZM) using molecular docking, molecular dynamics simulations, bioactivity and surface plasmon resonance (SPR) analyses to evaluate the molecular mechanisms, binding affinity, kinetic properties and bioactivity effects of these interactions. Complementary insights from molecular docking and molecular dynamics simulations indicate that DEHP has a stronger binding affinity for CEWLZM than MEHP. This affinity value was corroborated by an intense hydrophobic and van der Waals interaction network especially maintained by the active residue Leu75 and Asp101-Ala107. Although MEHP did not exhibit a significant effect on enzyme activity in lysozyme bioactivity assay, DEHP inhibited lysozyme with an IC50 value of 453 µM. SPR analysis revealed that DEHP exhibits a significantly stronger binding affinity to CEWLZM compared to MEHP.
Collapse
Affiliation(s)
- Müfide Aydoğan Ahbab
- Hamidiye Vocational School of Health Services, University of Health Sciences Turkey, İstanbul, Turkey.
| | - Ilgaz Taşteki L
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences Turkey, İstanbul, Turkey; Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, İstanbul, Turkey
| | - Evren Gazel Pınar
- Faculty of Pharmacy, University of Health Sciences Turkey, İstanbul, Turkey
| | - Pemra Özbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
| | - Emir Alper Türkoğlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences Turkey, İstanbul, Turkey
| |
Collapse
|
2
|
Liao T, Sha R, Zhang X, Wang Z, Mao Y, Huang J, Mao J. Synergistic bacterial inhibition by sodium phytate and microbial lysozyme: New insights from multispectral analysis and molecular docking. Int J Biol Macromol 2025; 307:141758. [PMID: 40049468 DOI: 10.1016/j.ijbiomac.2025.141758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Sodium phytate (SP) is a biocompatible chelating agent for rare metals, possessing inherent antioxidant and antibacterial properties, while microbial lysozyme (LYSO), as an enzyme derived from organisms, possesses broad-spectrum antibacterial and antiviral effects. In this study, the combination of SP and LYSO showed inhibitory synergism, effectively enhancing the antibacterial spectrum of LYSO. The interaction dynamics between SP and LYSO were scrutinized employing techniques of multispectral and molecular docking. The results of fluorescence bursting experiments revealed that SP reduced the fluorescence intensity of LYSO in the form of static bursting and non-radiative energy transfer. The thermodynamic examination of fluorescence data revealed that the reaction occurs naturally, primarily attributed to van der Waals forces and hydrogen bonds. Moreover, studies using synchronized and three-dimensional fluorescence spectroscopy UV spectroscopy, and Fourier infrared spectroscopy have shown that SP binding influences the structure of LYSO. Molecular docking showed that SP can spontaneously bind to amino acid residues Thr151 and Arg154 of LYSO through hydrogen bonding, thus reinforcing the validity of the experimental outcomes. The research offers theoretical backing for employing SP and LYSO in inhibiting bacteria.
Collapse
Affiliation(s)
- Tingxia Liao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China; College of Environment and Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China.
| | - Xuejin Zhang
- College of Environment and Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China
| | - Yangchen Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang Key Laboratory of Chemistry and Bioprocessing Technology for Agricultural Products, Zhejiang Collaborative Center for Biochemical Manufacturing of Agricultural Bio-resources, Hangzhou 310023, China
| |
Collapse
|
3
|
Patel BS, Yadav S, Surolia A, Jayaraman N. Multivalent chitobiose self-assembled glycostructures as ligands to lysozyme. Bioorg Chem 2025; 154:108009. [PMID: 39637484 DOI: 10.1016/j.bioorg.2024.108009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Synthetic chitobiose-containing glycolipid (GL) and lipid (L) are prepared in order to secure self-assembled multivalent glycostructures, constituted with varying molar fractions of GL and L. The morphologies of glycostructures are uniform, as adjudged by dynamic light scattering (DLS) in solution and microscopies in the solid state. Presence of the ester linkage between the lipid and chitobiose moieties permit hydrolysis and disassembly of the self-assembled structures at acidic and alkaline pH. The avidity of chitobiose in the multivalent glycostructures to lysozyme follows the percentage of GL in the GL-L compositions in the order 50 % GL > 100 % GL-L > 10 % GL-L. The interaction with lysozyme occurs with fast association and slow dissociation kinetics, from which the equilibrium binding constant (Ka) is identified to be 2-4 orders of magnitude higher (Ka 105 to 107 M-1), as compared to monomeric chitobiose-lysozyme complexation in solution. When assessed for the antimicrobial lytic property of lysozyme, the multivalent chitobiose-lysozyme complex is found to delay the lytic property, when compared to the enzyme alone. The study establishes (i) the pH-sensitive multivalent chitobiose-containing glycostructures for high affinity binding to lysozyme; (ii) that the multivalent ligand presentation enables orders of magnitude higher equilibrium binding constants with enzyme lysozyme and (iii) that the lytic activity of the enzyme is delayed upon complexation with the multivalent glycostructures.
Collapse
Affiliation(s)
- Bharat Singh Patel
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | - Shivender Yadav
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
4
|
Wang T, Li X, He F, Guo S, Du F, Song H, Liu R. Valence-dependent immune responses of earthworm coelomocytes: Toxicity pathways and molecular mechanisms of As (III) and As (V)-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177474. [PMID: 39532183 DOI: 10.1016/j.scitotenv.2024.177474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Epidemiological studies in inorganic arsenic (iAs) exposure populations have offered convincing evidence that exposure to arsenite (As (III)) and arsenate (As (V)) are linked to immune dysfunction and immunosuppression. However, the valence-dependent immunotoxicity mechanism of iAs has not been explored. In this work, we conducted a thorough investigation and comparison of lysosome dysfunction in As (III) and As (V) induced earthworm typical immune cells coelomocytes, and the binding reaction between As (III)/As (V) and immunoprotein lysozyme (LZM). Results indicated As (III) and As (V) induced severe alterations in NR uptake and caused serious damage to lysosomal membrane, particularly As (III). As (III) (21.24 %) had a stronger inhibitory effect on LZM activity in coelomocytes than As (V) (67.40 %), which showed a similar toxic trend as enzyme activity in vitro (As (III)-68.66 % and As (V)-78.50 %). LZM skeleton relaxation, secondary structural transformation, fluorescence sensitization and particle alteration provided evidence for As (III) trigger more grievous immunoprotein dysfunction. In conclusion, As (III) and As (V) triggered lysosomal membrane destruction in coelomocytes, as well as induced structural changes in LZM result in lysosomal hydrolase dysfunction in coelomocytes. Ultimately, cellular lysosome dysfunction and destruction, which leads to the normal immune system of the cells is disrupted. As (III) induced stronger immunosuppression through lysosome pathway than As (V). Our work reveals the degree of lysosome dysfunction triggered by As (III) and As (V) probably responsible for the valence-dependent immunosuppression patterns of iAs, and provide new insights for As toxicity assessment.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
5
|
Wang T, Li X, He F, Wang H, Guo S, Wang Y, Qi Y, Tian G, Liu R. New mechanistic insights into soil ecological risk assessment of arsenite (III) and arsenate (V):Cellular and molecular toxicity responses in Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136324. [PMID: 39515138 DOI: 10.1016/j.jhazmat.2024.136324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Inorganic arsenic (iAs) is a persistent bioaccumulation carcinogen that is most abundant in soils in the form of arsenite-As (III) and arsenate-As (V). However, there is currently very little explicit evidence about cytotoxicity of As on soil organisms. Moreover, toxicological data for iAs and proteotoxicity is shortage. The purpose of the present work is to elucidate the cytotoxicity mechanism of As (III) and As (V) to earthworms, a soil ecological sentinel species, and the molecular mechanisms by which As (III)/As (V) directly bind to antioxidative enzyme Cu/Zn-superoxide dismutase (Cu/Zn-SOD). Results indicate that iAs triggered cell membrane injury and genotoxicity. As (V) (56.15 %) induced lower cell viability than As (III) (61.88 %). Higher ROS and lipid peroxidation level in As (V) support greater cytotoxicity. Differences in cellular uptake due to valence induced diverse levels of oxidative stress and cytotoxicity. At the molecular level, As (III) (129.33 %) induced higher Cu/Zn-SOD activity than As (V) (110.75 %). Changes in backbone, secondary structure, amino acid microenvironment and particle size of Cu/Zn-SOD further revealed the mechanisms of differential molecular toxicity of As (III) and As (V). Binding reactions with Cu/Zn-SOD explain differences in molecular toxicity. Collective research showed that iAs-induced oxidative stress and binding reactions determine the difference of SOD activity between As (III) and As (V) at the cellular level. This work offers new insights into the health risk assessment of As.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Wang T, Jing M, Hu S, Li X, He F, Tian G, Liu R. Differential response of catalase to As (III) and As (V): Potential molecular mechanism under valence effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175562. [PMID: 39153621 DOI: 10.1016/j.scitotenv.2024.175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Arsenic (As) is the most prolific contaminant in food, triggering arseniasis primarily via contaminated rice and drinking contaminated water. However, toxicological data for arsenite (As (III)) and arsenate (As (V)) on antioxidant enzyme catalase (CAT) at molecular level is shortage. The interaction mechanism of As (III) and As (V) with CAT was investigated using enzyme activity detection, multi-spectroscopic techniques, isothermal titration calorimetry and computational simulations. Results indicated As (III) and As (V) induced protein skeleton relaxation, secondary structure transformation, fluorescence sensitization and particle alteration of CAT, particularly As (III). Moreover, As (III)/As (V) bound to CAT through hydrogen bonding and hydrophobic. As (III) and As (V) contacted with core residues His 74, Asn 147 and His A74, Trp A357, respectively, thereby inhibiting CAT activity. Overall, As (III) is more aggressive against the structure and physiological function of CAT than As (V). Our findings enhance the understanding of health risk related to dietary As exposure.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 5, 250100, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
7
|
Tong WH, Wang SQ, Chen GY, Li DX, Wang YS, Zhao LM, Yang Y. Characterization of the structural and molecular interactions of Ferulic acid ethyl ester with human serum albumin and Lysozyme through multi-methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124549. [PMID: 38870694 DOI: 10.1016/j.saa.2024.124549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Ferulic acid ethyl ester (FAEE) is an essential raw material for the formulation of drugs for cardiovascular and cerebrovascular diseases and leukopenia. It is also used as a fixed aroma agent for food production due to its high pharmacological activity. In this study, the interaction of FAEE with Human serum albumin (HSA) and Lysozyme (LZM) was characterized by multi-spectrum and molecular dynamics simulations at four different temperatures. Additionally, the quenching mechanism of FAEE-HSA and FAEE-LZM were explored. Meanwhile, the binding constants, binding sites, thermodynamic parameters, molecular dynamics, molecular docking binding energy, and the influence of metal ions in the system were evaluated. The results of Synchronous fluorescence spectroscopy, UV-vis spectroscopy, CD, three-dimensional fluorescence spectrum, and resonance light scattering showed that the microenvironment of HSA and LZM and the protein conformation changed in the presence of FAEE. Furthermore, the effects of some common metal ions on the binding constants of FAEE-HSA and FAEE-LZM were investigated. Overall, the experimental results provide a theoretical basis for promoting the application of FAEE in the cosmetics, food, and pharmaceutical industries and significant guidance for food safety, drug design, and development.
Collapse
Affiliation(s)
- Wen-Hua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China; Key Laboratory of Brewing Biotechnology and Application, Yibin 644000, China.
| | - Shu-Qin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Guan-Ying Chen
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Dong-Xu Li
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Yan-Sen Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Li-Ming Zhao
- School of Biotechnology, East China University of Science and Technology, Shanghai 200000, China
| | - Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.
| |
Collapse
|
8
|
Li Y, Li X, Cui Z, He F, Zong W, Liu R. Probing the toxic effect of quinoline to catalase and superoxide dismutase by multispectral method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122449. [PMID: 36753919 DOI: 10.1016/j.saa.2023.122449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Quinoline is a common nitrogen heterocyclic aromatic hydrocarbon with high water solubility. Studies have shown that quinoline can be teratogenic, carcinogenic and mutagenic. And Hepatocytes are the target cell of quinoline, which contain a large number of mitochondria and are related to cell function and the balance of reactive oxygen species (ROS). However, the research on the effect of quinoline on hepatocyte damage and anti-oxidation system is still unclear. Through the means of multispectral experiments, it is concluded that quinoline can affect the catalase (CAT) and superoxide dismutase (SOD), change their structure and affect their activity. The binding mode and binding site of quinoline to CAT/SOD were analyzed by isothermal calorimetric titration (ITC) and Molecular Operating Environment (MOE). In molecular docking simulation, the binding site of quinoline-CAT system is close to the active site, and affect the microenvironment of Tyr 357. This may be the reason why quinoline affects CAT activity and synchronous fluorescence (Δλ = 15 nm). This study demonstrated that quinoline has a great effect on CAT, which may affect the intracellular ROS balance and become a potential way to cause hepatocyte damage.
Collapse
Affiliation(s)
- Yuze Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
Zhang J. Hydroxylated polycyclic aromatic hydrocarbons possess inhibitory activity against alpha-glucosidase: An in vitro study using multispectroscopic techniques and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122366. [PMID: 36689906 DOI: 10.1016/j.saa.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Alpha-glucosidase (GAA) activity can be affected by exogenous substances. Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are typical metabolites of PAHs that can enter the body through various routes. The effects of 1-hydroxynaphthalene (1-OHNap) and 1-hydroxypyrene (1-OHPyr) on GAA activity and the potential mechanisms were investigated viamultispectroscopic methods and molecular docking. First-order derivative synchronous spectrofluorimetry was successfully applied to analyze the fluorescence quenching of GAA in the GAA-1-OHNap and GAA-1-OHPyr systems. 1-OHNap and 1-OHPyr had strong inhibitory effects on GAA activity. GAA could bind with 1-OHNap and 1-OHPyr in 1:1 mode with binding constants of 3.97 × 104 and 9.42 × 104 L/mol at 298 K. Hydrophobic interactions and hydrogen bonds played pivotal roles in the interactions. 1-OHNap was located closer to the active site of GAA than 1-OHPyr. This work suggests that the disturbance of glycometabolism by exogenous pollutants in the human body is worthy of attention and further investigation.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Estuarine Ecological Security and Environmental Health (Fujian Province University), Tan Kah Kee College, Xiamen University, Zhangzhou 363105, PR China.
| |
Collapse
|
10
|
Wu S, Wang W, Lu J, Deng W, Zhao N, Sun Y, Liu H, Li Z, Chen M, Cheng L, Guo Q, Wang C, Peng X. Binding of ankaflavin with bovine serum albumin (BSA) in the presence of carrageenan and protective effects of Monascus yellow pigments against oxidative damage to BSA after forming a complex with carrageenan. Food Funct 2023; 14:2459-2471. [PMID: 36790135 DOI: 10.1039/d2fo02946d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ankaflavin (AK) is a typical yellow pigment extracted from Monascus-fermented rice with several biological effects; however, its solubility is poor. Thus, research studies of the delivery systems of AK, especially those constructed from protein-polysaccharide complexes, have attracted considerable attention. However, the interactions that exist in the system have rarely been investigated. This work focused on the interactions between AK and bovine serum albumin (BSA) as well as the influence of carrageenan (Car) on the binding of AK to BSA. Results revealed that the quenching of BSA by AK involved the static quenching mechanism. The formed BSA-AK complexes were mainly maintained by hydrophobic forces and AK was located within the hydrophobic cavity of BSA. Compared to free AK or AK only complexed with BSA, a higher absorption intensity of AK was observed for the formed BSA-AK-Car complexes, indicating changes in the microenvironment of AK. This was confirmed by the increase in the α-helix content of BSA after the formation of BSA-AK-Car complexes. Hydrogen bond, van der Waals, and electrostatic interactions were verified to be the primary forces preserving the BSA-AK-Car complexes. Moreover, the antioxidant potential of Monascus-fermented products rich in AK (denoted as Mps), namely BSA-Mps and BSA-Mps-Car was evaluated. The antioxidant activity of Mps was negatively impacted by BSA, while the addition of Car could enhance the antioxidant capacity of BSA-Mps-Car complexes. Meanwhile, Mps showed a protective effect against free radical-induced oxidation damage to BSA, and Car could further improve this effect.
Collapse
Affiliation(s)
- Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Wenyu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jingwen Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Weili Deng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Nan Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mianhua Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, P. R. China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin 300072, P. R. China. .,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
11
|
Cui Z, He F, Li X, Li Y, Huo C, Wang H, Qi Y, Tian G, Zong W, Liu R. Response pathways of superoxide dismutase and catalase under the regulation of triclocarban-triggered oxidative stress in Eisenia foetida: Comprehensive mechanism analysis based on cytotoxicity and binding model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158821. [PMID: 36116645 DOI: 10.1016/j.scitotenv.2022.158821] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Triclocarban (TCC) is an emerging environmental contaminant, posing potential ecological risks. Displaying a high accumulation effect and 120-day half-life in the soil environment, the toxic effects of TCC to soil organisms have been widely reported. Previous studies have confirmed that TCC can induce the oxidative stress and changes in superoxide dismutase (SOD) and catalase (CAT) activities in earthworms, but the underlying mechanisms of oxidative stress and disorder in antioxidant enzyme activities induced by TCC have not yet been elucidated. Here, we explored the multiple response mechanisms of SOD and CAT under the regulation of oxidative stress induced by TCC. Results indicated that higher-dose (0-2.0 mg/L) TCC exposure triggered the overproduction of ROS in Eisenia foetida coelomocytes, causing oxidative damage and a decrease in cell viability that was response to ROS accumulation. The TCC-induced inhibition of intracellular SOD/CAT activity was found under the regulation of oxidative stress (SOD: 29.2 %; CAT: 18.5 %), and this effect was blunted by antioxidant melatonin. At the same time, the interaction between antioxidative enzymes and TCC driven by various forces (SOD: electrostatic interactions; CAT: van der Waals forces and hydrogen bonding) led to inhibited SOD activity (9.84 %) and enhanced CAT activity (17.5 %). Then, to elucidate the binding mode of TCC, we explored the changes in SOD and CAT structure (protein backbone and secondary structure), the microenvironment of aromatic amino acids, and aggregation behavior through multispectral techniques. Molecular docking results showed that TCC inhibited SOD activity in a substrate competitive manner and enhanced CAT activity by the stabilizing effects of TCC on the heme groups. Collectively, this study reveals the response mechanisms of SOD/CAT under the regulation of TCC-triggered oxidative stress and shed a new light on revealing the toxic pathways of exogenous pollutants on antioxidant-related proteins function.
Collapse
Affiliation(s)
- Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, PR China; America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|