1
|
Hsieh ZH, Lin CAJ, Yeh CK. Enhancing ultrasound applications through shell-less nanobubbles: A study on acoustic and optical properties. ULTRASONICS SONOCHEMISTRY 2025; 117:107336. [PMID: 40215792 PMCID: PMC12018085 DOI: 10.1016/j.ultsonch.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/27/2025]
Abstract
Histotripsy employs acoustic inertial cavitation to mechanically destroy tissue, producing acellular debris. While introducing bubbles can lower the cavitation threshold and enhance treatment efficiency, micrometer-scale bubbles struggle to penetrate tissues effectively. Shell-less nanobubbles, with their high internal pressure, stability, negatively charged surfaces, and unique lifetimes ranging from weeks to months, offer a promising alternative. However, their interactions with ultrasound remain unexplored. This study used a claw-type pump nanobubble generator to produce nanobubbles and employed acoustic and optical methods to observe their behavior under high-intensity ultrasound exposure. The results demonstrated that the device generated nanobubble solutions with an average particle size of 107 nm, a concentration of 1.94 × 109 particles/mL, a lifetime exceeding one week, and a zeta potential of -21.2 mV. Acoustic and optical observations further revealed that nanobubble solutions reduced the inertial cavitation threshold of the liquid from 26.5 MPa to 10.3 MPa. These findings suggest a potential strategy to enhance the efficiency of ultrasound histotripsy treatments.
Collapse
Affiliation(s)
- Zong-Han Hsieh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Cheng-An J Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Song J, Bazazi P, Hejazi SH. Early Time Spreading Dynamics of Nanobubble-Laden Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10908-10916. [PMID: 40135512 DOI: 10.1021/acs.langmuir.5c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Nanobubbles, when dispersed in a liquid phase, may enhance mass transport, adsorption, and reactions in many industrial applications, such as fabrication of functional materials, drug delivery, water treatment, carbon dioxide capture, and surface decontamination. Here, we experimentally study the early time spreading dynamics of nanobubble-laden surfactant drops on a hydrophilic solid surface submerged in an oil phase. Along with recovering the retarding effects of surfactants on the early time wetting dynamics, we report that nanobubbles can weaken Marangoni stresses and consequently reduce the duration of the retardation regime. Remarkably, we find that the duration of this retardation regime (tr) exponentially decays with the nanobubble concentration in the dispersion (Nb) according to Nb ∼ log(1/tr). The micro-particle imaging velocimetry analysis of the flow field inside the drop indicates a large reduction in the magnitude of velocities in the presence of surface-active materials, confirming the existence of Marangoni flow that opposes droplet spreading. Our research introduces a simple approach to calculate the nanobubble concentrations in liquids and offers guidelines for controlling wetting dynamics.
Collapse
Affiliation(s)
- Jiawen Song
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Parisa Bazazi
- Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Seyed Hossein Hejazi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
3
|
Cai L, Wu J, Zhang M, Wang K, Li B, Yu X, Hou Y, Zhao Y. Investigating the Potential of CO 2 Nanobubble Systems for Enhanced Oil Recovery in Extra-Low-Permeability Reservoirs. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1280. [PMID: 39120385 PMCID: PMC11314192 DOI: 10.3390/nano14151280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Carbon Capture, Utilization, and Storage (CCUS) stands as one of the effective means to reduce carbon emissions and serves as a crucial technical pillar for achieving experimental carbon neutrality. CO2-enhanced oil recovery (CO2-EOR) represents the foremost method for CO2 utilization. CO2-EOR represents a favorable technical means of efficiently developing extra-low-permeability reservoirs. Nevertheless, the process known as the direct injection of CO2 is highly susceptible to gas scrambling, which reduces the exposure time and contact area between CO2 and the extra-low-permeability oil matrix, making it challenging to utilize CO2 molecular diffusion effectively. In this paper, a comprehensive study involving the application of a CO2 nanobubble system in extra-low-permeability reservoirs is presented. A modified nano-SiO2 particle with pro-CO2 properties was designed using the Pickering emulsion template method and employed as a CO2 nanobubble stabilizer. The suitability of the CO2 nanobubbles for use in extra-low-permeability reservoirs was evaluated in terms of their temperature resistance, oil resistance, dimensional stability, interfacial properties, and wetting-reversal properties. The enhanced oil recovery (EOR) effect of the CO2 nanobubble system was evaluated through core experiments. The results indicate that the CO2 nanobubble system can suppress the phenomena of channeling and gravity overlap in the formation. Additionally, the system can alter the wettability, thereby improving interfacial activity. Furthermore, the system can reduce the interfacial tension, thus expanding the wave efficiency of the repellent phase fluids. The system can also improve the ability of CO2 to displace the crude oil or water in the pore space. The CO2 nanobubble system can take advantage of its size and high mass transfer efficiency, among other advantages. Injection of the gas into the extra-low-permeability reservoir can be used to block high-gas-capacity channels. The injected gas is forced to enter the low-permeability layer or matrix, with the results of core simulation experiments indicating a recovery rate of 66.28%. Nanobubble technology, the subject of this paper, has significant practical implications for enhancing the efficiency of CO2-EOR and geologic sequestration, as well as providing an environmentally friendly method as part of larger CCUS-EOR.
Collapse
Affiliation(s)
| | - Jingchun Wu
- Key Laboratory for EOR Technology (Ministry of Education), Northeast Petroleum University, Daqing 163318, China; (L.C.); (M.Z.); (K.W.); (B.L.); (X.Y.); (Y.H.); (Y.Z.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Pang Z, Zhou H, Yang S, Wang Y, Xue Y, Feng S. Enhanced surfactant remediation of diesel-contaminated soil using O 3 nanobubbles. CHEMOSPHERE 2024; 356:141917. [PMID: 38588900 DOI: 10.1016/j.chemosphere.2024.141917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Currently, nanobubbles are widely discussed in environmental research due to their unique properties, including significant specific surface area, transfer efficiency, and free radical generation. In this study, O2 and O3 nanobubbles (diameters ranging from 0 to 500 nm) were combined with conventional surfactant technology to investigate their enhanced efficacy in removing diesel contaminants from soil. The impact of various factors such as surfactant concentration, temperature, and soil aging duration on pollutant removal rates was examined across different experimental approaches (stirring/flushing). Soil samples subjected to different treatments were characterized using TG-DTG and FTIR analysis, while GC/MS was employed to assess the degradation products of diesel constituents in the soil. The results indicated that the elution efficiencies of the three surfactants (SDS, SDBS, and TX-100) for diesel in soil correlated positively with concentration (0.3-1.4 CMC) and temperature (18-60 °C), and inversely with aging time (10-300 days), with the elution capacity was SDS > SDBS > TX-100. Mechanical stirring (500 rpm) and temperature variations (18-60 °C) did not affect the stability of the nanobubbles. Upon the introduction of O3 nanobubbles to the surfactant solution, there was a consistent increase in both the removal (degraded and removed) efficiency and rate of diesel under varying experimental conditions, resulting in an enhancement of removal rates by approximately 8-15%. FTIR spectroscopy showed that surfactants containing O3 nanobubbles mitigated the impact on the primary functional groups of soil organic matter. GC/MS analyses indicated that residual pollutants were predominantly alkanes, with degradation difficulty ranking as: alkanes < alkenes < cycloalkanes < aromatic compounds. TG-DTG coupled with GC/MS analysis demonstrated that O3 nanobubbles contributed to a reduction in surfactant residues. This study significantly advances our understanding of how nanobubbles facilitate and optimize surfactant-assisted remediation of contaminated soil, thereby advancing the precise application of nanobubble technology in soil remediation.
Collapse
Affiliation(s)
- Zhongzheng Pang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Huiping Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Songnan Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yiqun Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yingang Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Sheng Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
5
|
Tong WK, Dai C, Hu J, Li J, Gao MT, You X, Feng XR, Li Z, Zhou L, Zhang Y, Lai X, Kahon L, Fu R. A novel eco-friendly strategy for removing phenanthrene from groundwater: Synergism of nanobubbles and rhamnolipid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168099. [PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
Collapse
Affiliation(s)
- Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ru Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Li
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | - Long Kahon
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universitiy Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Yasui K, Tuziuti T, Kanematsu W. Mechanism of the Decrease in Surface Tension by Bulk Nanobubbles (Ultrafine Bubbles). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16574-16583. [PMID: 37934653 DOI: 10.1021/acs.langmuir.3c02545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The mechanism of the decrease in the surface tension of water containing bulk nanobubbles (ultrafine bubbles) is studied theoretically by numerical simulations of the adsorption of bulk nanobubbles at the liquid's surface based on the dynamic equilibrium model for the stability of a bulk nanobubble under the conditions of the Tuziuti experiment (Tuziuti, T., et al., Langmuir, 2023, 39, 5771-5778). It is predicted that the concentration of bulk nanobubbles in the bulk liquid decreases considerably with time, as many bulk nanobubbles are gradually adsorbed at the liquid's surface. A part of the decrease in surface tension is due to the Janus-like structure of a bulk nanobubble that could partly break the hydrogen bond network of water molecules at the liquid's surface because more than 50% of the bubble's surface is covered with hydrophobic impurities, according to the dynamic equilibrium model. The theoretically estimated decrease in surface tension due to the Janus-like structure of a bulk nanobubble agrees with the experimental data of the decrease in surface tension solely by bulk nanobubbles obtained by the comparison of before and after the elimination of bulk nanobubbles by the freeze-thaw process. This effect cannot be explained by the electric charge stabilization model widely discussed for the stability of a bulk nanobubble, although the present model is only applicable to the solution containing hydrophobic impurities. Another part of the decrease in surface tension should be due to impurities produced from a nanobubble generator, such as a mechanical seal, which was partly confirmed by the TOC measurements.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Toru Tuziuti
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Wataru Kanematsu
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
7
|
Tuziuti T, Yasui K, Kanematsu W. Decrease in the Surface Tension of Nanobubble Dispersion in Water: Results of Surface Excess of Bulk Nanobubbles at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5771-5778. [PMID: 37052932 DOI: 10.1021/acs.langmuir.3c00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The effect of nanobubbles (NBs) on the surface tension of liquid was investigated by three methods of different measuring principles, pendant drop (PD), Wilhelmy, and du Noüy methods, over a wide range of number concentration of bulk NBs (BNBs). In all of the three methods, the surface tension decreased in proportion to the number concentration of BNBs and the proportional constant was different among the three methods. Such behavior was inferred to be caused by the surface excess of BNBs at the gas-liquid or solid-liquid interface. In the PD method, the hydrophobic interaction between BNBs and air around a drop seems to cause the surface excess of BNBs along the surface of water drops. It brings about a subtle change in its profile, resulting in the decrease in surface tension, which takes a time of hundreds of seconds. Meanwhile, in the Wilhelmy and du Noüy methods, electrostatic attractive force between BNBs and a plate or ring is a likely cause of surface excess at the solid-liquid interface, resulting in the instantaneous decrease in surface tension. This study also provides a practical methodology of comparison for surface tension of NB dispersion: surface tension shall be compared among different samples with the same measurement method. Especially in the PD method, retention time of droplets before measurement shall be the same among samples.
Collapse
Affiliation(s)
- Toru Tuziuti
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakaurazaka, Moriyama-ku, Nagoya 463-8560, Japan
| | - Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakaurazaka, Moriyama-ku, Nagoya 463-8560, Japan
| | - Wataru Kanematsu
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakaurazaka, Moriyama-ku, Nagoya 463-8560, Japan
| |
Collapse
|
8
|
Yasui K. Critical Roles of Impurities and Imperfections in Various Phases of Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1612. [PMID: 36837241 PMCID: PMC9960772 DOI: 10.3390/ma16041612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/01/2023]
Abstract
In many materials, impurities and imperfections play a critical role on the physical and chemical properties. In the present review, some examples of such materials are discussed. A bulk nanobubble (an ultrafine bubble) is stabilized against dissolution by hydrophobic impurities attached to the bubble surface. An acoustic cavitation threshold in various liquids decreases significantly by the presence of impurities such as solid particles, etc. The strength of brittle ceramics is determined by the size and number of pre-existing microcracks (imperfections) in the specimen. The size effect of a BaTiO3 nanocrystal is influenced by the amount and species of adsorbates (impurities) on its surface as adsorbate-induced charge-screening changes the free energy. The dielectric constant of an assembly of BaTiO3 nanocubes is influenced by a small tilt angle (imperfection) between two attached nanocubes, which induces strain inside a nanocube, and is also influenced by the spatial strain-relaxation due to defects and dislocations (imperfections), resulting in flexoelectric polarization.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|
9
|
Zhang Y, Duan H, Chen E, Li M, Liu S. Physicochemical Characteristics and the Scale Inhibition Effect of Air Nanobubbles (A-NBs) in a Circulating Cooling Water System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1629-1639. [PMID: 36648293 DOI: 10.1021/acs.langmuir.2c03075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Air nanobubbles (A-NBs) in a circulating cooling water system have not been investigated, although their role is significant. In this paper, the influences of the contents of main salts and other parameters on the physicochemical characteristics and scale inhibition performance of A-NBs in circulating cooling water were investigated and the scale inhibition mechanism of A-NBs in a simulated circulating cooling water system was explored. A-NBs realized a higher scale inhibition rate of 90%, which was higher than that of 1-hydroxyethane-1,1-diphosphonic acid (40%), and A-NBs stably existed for more than 5 days in the complex water environment. Four interface functions were proposed to interpret the scale inhibition effect of A-NBs in circulating cooling water as follows. First, the negatively charged surface of A-NBs adsorbed cations (Ca2+) reduced the concentration of scaling ions. Second, the negatively charged surface of A-NBs could also adsorb microcrystals, and their crystal-like seed action was conducive to the formation of large-size crystals, broke the rules of crystal growth, and reduced the adhesion of scales to the pipe wall. Third, A-NBs could also form a bubble layer after they were adsorbed on the inner surface of pipes, thereby preventing the deposition of scales on the surface. Fourth, A-NB burst caused local turbulence, increased the shear force onto the pipe surface, and reduced the scales adhering to the pipe surface. The interface effect of A-NBs in metal pipes is important in many industrial applications. This study laid the basis for the development of a new green A-NB scale-inhibiting technology.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, 071003Baoding, Hebei, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 102206Beijing, P. R. China
| | - Haiyang Duan
- Department of Environmental Science and Engineering, North China Electric Power University, 071003Baoding, Hebei, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 102206Beijing, P. R. China
| | - Erjun Chen
- Department of Environmental Science and Engineering, North China Electric Power University, 071003Baoding, Hebei, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 102206Beijing, P. R. China
| | - Ming Li
- Department of Environmental Science and Engineering, North China Electric Power University, 071003Baoding, Hebei, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 102206Beijing, P. R. China
| | - Songtao Liu
- Department of Environmental Science and Engineering, North China Electric Power University, 071003Baoding, Hebei, P. R. China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 102206Beijing, P. R. China
| |
Collapse
|
10
|
Tegladza ID, Lin G, Liu C, Gu X. Control of crystal nucleation, size and morphology using micro−/nanobubbles as green additives – a review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Kai Tong W, Dai C, Hu J, Li J, Gao MT, Li Z, Zhou L, Zhang Y, Kahon L. Solubilization and remediation of polycyclic aromatic hydrocarbons in groundwater by cationic surfactants coupled nanobubbles: Synergistic mechanism and application. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. MINERALS 2022. [DOI: 10.3390/min12080944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution.
Collapse
|
13
|
Yasui K. On Some Aspects of Nanobubble-Containing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2175. [PMID: 35808010 PMCID: PMC9268271 DOI: 10.3390/nano12132175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Theoretical studies are reviewed for bulk nanobubbles (ultrafine bubbles (UFBs)), which are gas bubbles smaller than 1 μm in diameter. The dynamic equilibrium model is discussed as a promising model for the stability of a UFB against dissolution; more than half of the surface of a UFB should be covered with hydrophobic material (impurity). OH radicals are produced during hydrodynamic or acoustic cavitation to produce UFBs. After stopping cavitation, OH radicals are generated through chemical reactions of H2O2 and O3 in the liquid water. The possibility of radical generation during the bubble dissolution is also discussed based on numerical simulations. UFBs are concentrated on the liquid surface according to the dynamic equilibrium model. As a result, rupture of liquid film is accelerated by the presence of UFBs, which results in a reduction in "surface tension", measured by the du Noüy ring method. Finally, the interaction of UFBs with a solid surface is discussed.
Collapse
Affiliation(s)
- Kyuichi Yasui
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| |
Collapse
|