1
|
Hajiaghababaei L, Mazloomifar A, Khalilian F, Farahani GT. Functionalization of magnetic nanoparticles with 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid as an efficient adsorbent for the Gefitinib removal from water. Sci Rep 2025; 15:5905. [PMID: 39966562 PMCID: PMC11836423 DOI: 10.1038/s41598-025-89641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
This study presents a novel adsorbent for the removal of Gefitinib from water using 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid modified SiO2@SPION nanoparticles (as SPION@CPFO-PAC). Several investigations were conducted to examine the chemical characteristics, morphological aspects, thermal stability, and magnetic behavior of the produced nano adsorbent. Based on the analysis findings, the produced nano adsorbent exhibited superparamagnetic properties. The findings of the TEM and SEM pictures indicate that the synthesis technique resulted in the creation of uniform nanoparticles, mostly spherical in shape, with an average size of 20-25 nm. These nanoparticles exhibit well-defined structure and possess excellent stability. Under optimal conditions (100 ng/mL-10 mL of Gefitinib, adsorbent dosage = 0.02 g, t = 30 min), the drug elimination percentage reached 92.02%. The results from these adsorption studies were described using the Freundlich isotherm, and the pseudo-second-order model well described the kinetics of adsorption. The thermodynamic investigation indicates that the process is spontaneous and exothermic, as shown by the results of ΔH and ΔG values at various temperatures. The study examined the capacity to retrieve the produced nanoadsorbent and found that it could be efficiently separated and reused for four consecutive cycles without significant decrease in adsorption effectiveness.
Collapse
Affiliation(s)
- Leila Hajiaghababaei
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mazloomifar
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Faezeh Khalilian
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ghazal Taghizadeh Farahani
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Roy S, Mishra SR, Ahmaruzzaman M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121802. [PMID: 39003907 DOI: 10.1016/j.jenvman.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min-1 and 0.04370 min-1 for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu2+ of the MOF metal center, reducing it to Cu+, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
3
|
Alhalili Z, Abdelrahman EA. Efficient removal of Zn(II) ions from aqueous media using a facilely synthesized nanocomposite based on chitosan Schiff base. Sci Rep 2024; 14:17598. [PMID: 39079974 PMCID: PMC11289282 DOI: 10.1038/s41598-024-68745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
The development of nanomaterials incorporating organic components holds significant importance in addressing the efficient removal of metal ions through adsorption. Hence, in this study, a novel MnFe2O4/chitosan/Schiff base nanocomposite was successfully synthesized by crosslinking MnFe2O4 nanoparticles with functionalized chitosan using a novel Schiff base. The Schiff base was created through the condensation reaction between 2-aminophenol and terephthalaldehyde. Comprehensive characterization of the synthesized nanocomposite was performed through FT-IR, XRD, SEM, and VSM analyses, revealing a less crystalline arrangement compared to pure chitosan, a rough and non-uniform surface morphology, and a reduced magnetization value of 30 emu/g. Furthermore, the synthesized MnFe2O4/chitosan/Schiff base nanocomposite was working as an adsorbent for the effective disposal of Zn(II) ions from aqueous solutions. The synthesized nanocomposite exhibited a maximum sorption capacity of 289.86 mg/g for Zn(II) ions. Additionally, the results indicated that the removal of Zn(II) ions by the synthesized nanocomposite was a spontaneous, chemical, and endothermic process, aligning well with the Langmuir isotherm as well as the pseudo-second-order model. Furthermore, at pH 7.5, with a contact duration of 100 min and a temperature of 328 K, the fabricated nanocomposite reached its maximum sorption capacity for Zn(II) ions. The results of this study demonstrate the effectiveness of the newly synthesized MnFe2O4/chitosan/Schiff base nanocomposite in removing Zn(II) ions from aqueous media. The novel synthesis approach and the high adsorption capacity of 289.86 mg/g underscore the potential of this composite for practical applications in industrial wastewater treatment. The dual removal mechanism involving electrostatic attraction and complexation processes further enhances its utility, making it a valuable contribution to the field of environmental remediation.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Humanities, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| |
Collapse
|
4
|
Mosaffa E, Ramsheh NA, Banerjee A, Ghafuri H. Bacterial cellulose microfilament biochar-architectured chitosan/polyethyleneimine beads for enhanced tetracycline and metronidazole adsorption. Int J Biol Macromol 2024; 273:132953. [PMID: 38944566 DOI: 10.1016/j.ijbiomac.2024.132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
5
|
Abd El-Mouhsen RR, El-Sayed GO, El-Feky HH, Khalil MMH, El-Sewify IM. Magnetized cubic zinc MOFs for efficient removal of hazardous cationic and anionic dyes in aqueous solutions. RSC Adv 2024; 14:19322-19330. [PMID: 38887647 PMCID: PMC11181133 DOI: 10.1039/d4ra02453b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
A significant amount of dye runoff and aqueous waste are released from the manufacturing process of dyes with intense and permanent colors, which are undesirable from a cultural and ecological aspect. In this paper, we present a green, simple, low-effort, and energy-efficient method of creating magnetized cubic Zn-MOFs for the adsorption and elimination of various organic dyes. Magnetic iron oxide materials with a hierarchical structure were loaded and doped into cubic zinc metal-organic frameworks (MDLZ). High magnetic characteristics, chemical stability, minimal toxicity, and ease of removing various dyes from aqueous effluents are all exhibited by the developed MDLZ adsorbent. To assess MDLZ's capacity to adsorb organic dyes from an aqueous solution, organic dyes such as Crystal Violet (CV), Neutral Red (NR), and Congo Red (CR) were used as model materials. Many adsorption factors were examined, including temperature, pH, contact time, initial concentration, and adsorbent dosage. Under optimal elimination circumstances, MDLZ was utilized to evaluate the kinetic, thermodynamic, and isotherm models for the adsorption of CR, NR, and CV dyes. The adsorption capacity (q m) of the MDLZ adsorbent at 25 °C was 39.37 mg g-1 for CV, 239.81 mg g-1 for CR, and 321.54 mg g-1 for NR, which is significantly higher than those of other adsorbents reported. The magnetized nanocubes' large surface area and uniform micropores enabled them to eliminate a large number of organic dyes from wastewater effectively, and their strong adsorption capability persisted even after four reuse cycles. The microporous MLDZ adsorbent offers a simple and effective method for handling industrial effluents and filtration of water.
Collapse
Affiliation(s)
- Ramy R Abd El-Mouhsen
- Department of Chemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt
| | - Gamal O El-Sayed
- Department of Chemistry, Faculty of Science, Benha University Egypt
| | - Hesham H El-Feky
- Department of Chemistry, Faculty of Science, Benha University Egypt
| | - Mostafa M H Khalil
- Department of Chemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt
| |
Collapse
|
6
|
Keshu, Rani M, Shanker U. Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane. Int J Biol Macromol 2024; 268:131535. [PMID: 38631586 DOI: 10.1016/j.ijbiomac.2024.131535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Herein, efficient degradation of hexabromocyclododecane (HBCD) and Lindane, a persistent organic pollutant using guar gum based calcium oxide doped silicon dioxide (GG-CaO@SiO2) has been reported. The nanocomposite was prepared by waste egg shell (CaO) and rice husk (SiO2) was well characterized. The maximum degradation of HBCD and Lindane were observed at 8 mg catalyst loading, neutral pH, and 2 mg L-1 of pollutant amount. The photocatalytic performance of GG-CaO@SiO2 for HBCD and Lindane photodegradation was evaluated, and it was found that the rate constant increased in the order of GG-CaO@SiO2 > CaO@SiO2 > GG. The polymeric GG-CaO@SiO2 nanocomposite showed maximum removal of both pollutants due to higher surface area (70 m2 g-1) and synergistic interactions among GG moieties. It achieved HBCD and Lindane elimination rates of 94 % and 90 % by photo-adsorptive degradation within 150 min. Meanwhile, the leaching of HBCD from expanded polystyrene (EPS) materials (0.14 ± 0.05 ppm) underwater with different time intervals and degradation of leachate HBCD were also assessed. The eradication of the pollutant manifested first-order kinetics, with the Langmuir adsorption. LC-MS analysis confirmed that GG-CaO@SiO2 effectively breaks down complex structure toxic pollutants into safer metabolites under natural sunlight exposure. The polymeric GG-CaO@SiO2 nanocomposite showed notable reusability up to ten cycle promotes sustainability.
Collapse
Affiliation(s)
- Keshu
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar 144008, Punjab, India; Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Manviri Rani
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Jalandhar 144008, Punjab, India.
| | - Uma Shanker
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
7
|
Rani M, Keshu, Shanker U. Green construction of biochar@NiFe 2O 4 nanocomposite for highly efficient photocatalytic remediation of pesticides from agriculture wastewater. CHEMOSPHERE 2024; 352:141337. [PMID: 38307329 DOI: 10.1016/j.chemosphere.2024.141337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The world's attention is drawn to the widespread ingestion, toxicity, and bioaccumulation of the Atrazine (AT) and Endosulfan (ES). Pesticides have been proven to have endocrine-disrupting, genotoxic, and persistent characteristics. In this work, the structural design of green synthesized NiFe2O4 is incorporated in rice husk biochar to form BC@NiFe2O4 nanocomposite. Powder X-ray diffraction and microscopic analysis confirmed the semi-crystalline nature of BC@NiFe2O4 reduced due to the incorporation of amorphous BC. The green BC@NiFe2O4 nanocomposite degraded AT and ES up to 98 % and 92 %, respectively. The maximum degradation achieved by BC@NiFe2O4 nanocomposite with minimum pollutants concentration (50 mg L-1) with 10 mg catalyst dose at acidic pH in natural sunlight because of the higher negative value of zeta potential (-26.4 mV) and lower band gap (2.5 eV). The degradation process involves first-order kinetics followed by initial Langmuir adsorption. The presence of various radical quenchers (t-BuOH, p-BZQ, Na2EDTA) has led to the conclusion that hydroxyl radicals play a significant role in the degradation of the toxic substances AT and ES. Additionally, a green-fabricated BC@NiFe2O4 nanocomposite has exhibited exceptional efficiency in degrading AT and ES pollutants in actual wastewater samples. Furthermore, this nanocomposite has demonstrated outstanding sustainability and cost-effectiveness, maintaining its effectiveness for up to eight cycles without a noticeable reduction in activity. In summary, due to its favorable surface characteristics, the environmentally friendly BC@NiFe2O4 nanocomposite holds excellent promise as a unique and potential photocatalyst for various industrial applications.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India.
| | - Keshu
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India; Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India, 144011
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India, 144011.
| |
Collapse
|
8
|
Keshu, Rani M, Shanker U. One pot green synthesis of Al doped zinc ferrite nanoparticle decorated with reduced graphene oxide for photocatalytic remediation of organic pollutants: Green synthesis, kinetics, and photoactivity. CHEMOSPHERE 2023; 344:140381. [PMID: 37806330 DOI: 10.1016/j.chemosphere.2023.140381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The world is drawn to the widespread use, toxicity, and bioaccumulation of the Atrazine (AT) and Auramine O (AO). Pesticides and dyes also have endocrine disruptors, genotoxic and persistent properties. Therefore, the photodegradation of AT and AO in water was investigated. Herein, the structural design of Al-ZnFe2O4 incorporated in rGO nanocomposite has been synthesized via facile precipitation and green synthesis methodology. PXRD and microscopic analysis confirmed the reduced crystallinity nature of Al-ZnFe2O4 due to the incorporation of amorphous rGO. The green Al-ZnFe2O4@rGO nanocomposite (AT: 90%; AO: 95%) showed maximum degradation as compared to native nanoparticles with minimum pollutants concentration of 10 mg catalytic dose at neutral pH in sunlight irradiation due to negative zeta potential (-36.0 mV), higher surface area (163 m2g-1) and tailored band gap (2.1 eV). First-order kinetics followed by initial Langmuir adsorption constituted the degradation process. The presence of different radical quenchers (t-BuOH, p-BZQ, Na2EDTA) concluded that hydroxyl radical plays a significant role in the degradation of toxic AT and AO. Green fabricated Al-ZnFe2O4@rGO also showed excellent efficiency for the degradation of AT and AO pollutant in real wastewater sample. Nanocomposite demonstrated remarkable sustainability and cost-effectiveness by remaining effective for up to nine cycles without experiencing any appreciable activity reduction. Due to its favorable surface features, Al-ZnFe2O4@rGO nanocomposite made via green process is a unique and potential photocatalyst for industrial applications.
Collapse
Affiliation(s)
- Keshu
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India; Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
9
|
Tariq MS, Imran M, Ud Din S, Murtaza B, Naeem MA, Amjad M, Shah NS, Khalid MS, Abdel-Maksoud MA, Alfuraydi AA, AbdElgawad H. Magnetic nanocomposite of maize offal biomass for effective sequestration of Congo red and methyl orange dyes from contaminated water: modeling, kinetics and reusability. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:975-992. [PMID: 37968930 DOI: 10.1080/15226514.2023.2280047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The current study aims to use a facile and novel method to remove Congo red (CR) and Methyl Orange (MO) dyes from contaminated water with Maize offal biomass (MOB) and its nanocomposite with magnetic nanoparticles (MOB/MNPs). The MOB and MOB/MNPs were characterized with Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), BET, XRD and point of zero charge (pHPZC). The influence of initial CR and MO levels (20-320 mg/L), adsorbent dosage (1-3 g/L), pH (3-9), co-exiting ions, temperature (25-45 °C) and time (15-180 min) was estimated. The findings demonstrated that MOB/MNPs exhibited excellent adsorption of 114.75 and 29.0 mg/g for CR and MO dyes, respectively while MOB exhibited 81.35 and 23.02 mg/g adsorption for CR and MO dyes, respectively at optimum pH-5, and dose 2 g/L. Initially, there was rapid dye removal which slowed down until equilibrium was reached. The interfering/competing ions in contaminated water and elevated temperature favored the dyes sequestration. The MOB/MNPs exhibited tremendous reusability and stability. The dyes adsorption was spontaneous, and exothermic with enhanced randomness. The adsorption effects were well explained with Freundlich model, pseudo second order and Elovich models. It is concluded that MOB/MNPs showed excellent, eco-friendly, and cost-effective potential to decontaminate the water.
Collapse
Affiliation(s)
- Muhammad Salman Tariq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Salah Ud Din
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Mohammadnejad M, Nekoo NM, Alizadeh S, Sadeghi S, Geranmayeh S. Enhanced removal of organic dyes from aqueous solutions by new magnetic HKUST-1: facile strategy for synthesis. Sci Rep 2023; 13:17981. [PMID: 37863958 PMCID: PMC10589292 DOI: 10.1038/s41598-023-45075-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
A novel, magnetic HKUST-1 MOF based on MgFe2O4-NH2 was designed and synthesized in two steps and applied effective removal of malachite green (MG), crystal violet (CV), and methylene blue (MB) from water samples. Characterization of the newly synthesized MgFe2O4-NH2-HKUST-1 was performed by various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Brunauer-Emmett-Teller, Thermal gravimetric analysis, and Vibration sampling magnetometry. Malachite green, crystal violet and methylene blue are toxic and mutagenic dyes that can be released into the water in different ways and cause many problems for human health and the environment. The removal of malachite green, crystal violet, and methylene blue from aqueous solutions was investigated using the magnetic HKUST-1 in this research. The effect of various parameters such as pH, amount of sorbent, dye concentration, temperature, and contact time on dye removal has been studied. The results showed that more than 75% of dyes were removed within 5 min. Adsorption isotherms, Kinetic, and thermodynamic studies were investigated. The results of this study show that adsorption capacity of the magnetic adsorbent is equal to 108.69 mg g-1 for MG, 70.42 mg g-1 for CV, and 156.25 mg g-1 for MB. This study shows the good strategy for the synthesis of the functionalized magnetic form of HKUST-1 and its capability for increasing the efficiency of the removal process of malachite green, crystal violet, and methylene blue from an aqueous solution.
Collapse
Affiliation(s)
- Masoumeh Mohammadnejad
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| | - Niosha Mokhtari Nekoo
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Sedighe Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Soosan Sadeghi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Shokoofeh Geranmayeh
- Department of Physical Chemistry and Nanochemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
11
|
Pervez MN, Jahid MA, Mishu MMR, Talukder ME, Buonerba A, Jiang T, Liang Y, Tang S, Zhao Y, Dotto GL, Cai Y, Naddeo V. Tuning the surface functionality of polyethylene glycol-modified graphene oxide/chitosan composite for efficient removal of dye. Sci Rep 2023; 13:13460. [PMID: 37596393 PMCID: PMC10439132 DOI: 10.1038/s41598-023-40701-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
There has been a lot of attention on water pollution by dyes in recent years because of their serious toxicological implications on human health and the environment. Therefore, the current study presented a novel polyethylene glycol-functionalized graphene oxide/chitosan composite (PEG-GO/CS) to remove dyes from aqueous solutions. Several characterization techniques, such as SEM, TEM, FTIR, TGA/DTG, XRD, and XPS, were employed to correlate the structure-property relationship between the adsorption performance and PEG-GO/CS composites. Taguchi's (L25) approach was used to optimize the batch adsorption process variables [pH, contact time, adsorbent dose, and initial concentration of methyl orange (MO)] for maximal adsorption capacity. pH = 2, contact time = 90 min, adsorbent dose = 10 mg/10 mL, and MO initial concentration = 200 mg/L were found to be optimal. The material has a maximum adsorption capacity of 271 mg/g for MO at room temperature. With the greatest R2 = 0.8930 values, the Langmuir isotherm model was shown to be the most appropriate. Compared to the pseudo-first-order model (R2 = 0.9685), the pseudo-second-order model (R2 = 0.9707) better fits the kinetic data. Electrostatic interactions were the dominant mechanism underlying MO sorption onto the PEG/GO-CS composite. The as-synthesized composite was reusable for up to three adsorption cycles. Thus, the PEG/GO-CS composite fabricated through a simple procedure may remove MO and other similar organic dyes in real contaminated water.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Md Anwar Jahid
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China
| | - Mst Monira Rahman Mishu
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Md Eman Talukder
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan, 430200, China.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy.
| |
Collapse
|
12
|
Munagapati VS, Wen HY, Gollakota ARK, Wen JC, Lin KYA, Shu CM, Yarramuthi V, Basivi PK, Reddy GM, Zyryanov GV. Magnetic Fe 3O 4 nanoparticles loaded guava leaves powder impregnated into calcium alginate hydrogel beads (Fe 3O 4-GLP@CAB) for efficient removal of methylene blue dye from aqueous environment: Synthesis, characterization, and its adsorption performance. Int J Biol Macromol 2023; 246:125675. [PMID: 37414311 DOI: 10.1016/j.ijbiomac.2023.125675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
In the present work, a novel Fe3O4-GLP@CAB was successfully synthesized via a co-precipitation procedure and applied for the removal of methylene blue (MB) from aqueous environment. The structural and physicochemical characteristics of the as-prepared materials were explored using a variety of characterization methods, including pHPZC, XRD, VSM, FE-SEM/EDX, BJH/BET, and FTIR. The effects of several experimental factors on the uptake of MB using Fe3O4-GLP@CAB were examined through batch experiments. The highest MB dye removal efficiency of Fe3O4-GLP@CAB was obtained to be 95.2 % at pH 10.0. Adsorption equilibrium isotherm data at different temperatures showed an excellent agreement with the Langmuir model. The adsorption uptake of MB onto Fe3O4-GLP@CAB was determined as 136.7 mg/g at 298 K. The kinetic data were well-fitted by the pseudo-first-order model, indicating that physisorption mainly controlled it. Several thermodynamic variables derived from adsorption data, like as ΔGo, ΔSo, ΔHo, and Ea, accounted for a favourable, spontaneous, exothermic, and physisorption process. Without seeing a substantial decline in adsorptive performance, the Fe3O4-GLP@CAB was employed for five regeneration cycles. Because they can be readily separated from wastewater after treatment, the synthesized Fe3O4-GLP@CAB was thus regarded as a highly recyclable and effective adsorbent for MB dye.
Collapse
Affiliation(s)
- Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC
| | - Hsin-Yu Wen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Anjani R K Gollakota
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC; Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC
| | - Jet-Chau Wen
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC; Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan, ROC
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan, ROC
| | - Vijaya Yarramuthi
- Department of Chemistry, Vikrama Simhapuri University, Nellore 524320, Andhra Pradesh, India
| | - Praveen Kumar Basivi
- Pukyong National University Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Guda Mallikarjuna Reddy
- Chemical Engineering Institute, Ural Federal University, 620002 Yekaterinburg, Russian Federation; Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, 620002 Yekaterinburg, Russian Federation; Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street, Yekaterinburg, Russian Federation
| |
Collapse
|
13
|
Pandey B, Singh P, Kumar V. Adsorption of anionic dye from aqueous environment using surface-engineered Zn/Cu hydroxy double salt-based material: mechanistic, equilibrium and kinetic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:869-884. [PMID: 37559360 DOI: 10.1080/10934529.2023.2243193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023]
Abstract
Herein, ethylene glycol (EG)-modified Zn/Cu hydroxy double salts (HDS) were synthesized using a facile synthetic approach. The formation of layered structure and presence of EG in the interlayer region were confirmed using PXRD and FTIR techniques. Furthermore, XPS analysis was used to confirm presence of metal ions in synthesized HDS. The surface area and pore size diameter of the HDS was found to be 32.30 m2 g-1 and 2.22 nm, respectively, using BET. The role of HDS was evaluated for its potential application as a sorbent for Congo red (CR) dye uptake. Batch studies were conducted to examine the impact of key variables, i.e., pH, time, adsorbent dosage and dye concentration on adsorption efficiency of HDS. Linear-nonlinear isotherm and kinetic models were employed for detailed analysis of experimental data. Langmuir, Freundlich and Temkin isotherm models were subsequently utilized to fit equilibrium data, among which Langmuir demonstrated to be most accurate. The maximum monolayer adsorption capacity estimated using Langmuir model was computed to be 181.81 mg g-1. The kinetic data follows pseudo-second-order model having good R2 value (0.999). Additionally, thermodynamic study suggested spontaneous and endothermic nature of adsorption process having reusability up to 5 cycles with removal efficiency more than 85%.
Collapse
Affiliation(s)
- Bhamini Pandey
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Vinod Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
14
|
Yeo KFH, Dong Y, Xue T, Chen Z, Zhang N, Yang Y, Han L, Liu M, Nsilani Kouediatouka A, Mouguegue HPPL, Wang W. Characterisation of kapok fibre's biochar for arsenate adsorption removal from aqueous solution. ENVIRONMENTAL RESEARCH 2023; 228:115822. [PMID: 37028542 DOI: 10.1016/j.envres.2023.115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Al-KBC was produced through the simple pyrolysis of Al-modified kapok fibres at high temperatures. Using the N2 adsorption Brunauer Emmett Teller (BET) process, Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the energy-dispersive X-ray spectroscopy (EDS) spectroscopy, and X-ray photoelectron spectroscopy (XPS), the sorbent changes and characteristics were analysed. As a result of Al's addition to the fibre's surface, Al-KBC exhibited superior As(V) adsorption performance compared to KBC due to better pore structures. Experiments on the kinetics of As(V) adsorption revealed that the adsorption followed the pseudo-second-order model and that intradiffusion was not the only factor governing the adsorption. Experiments with isotherms indicated that the adsorption mechanism corresponded to the Langmuir model, and the adsorption capacity Qm of Al-KBC at 25 °C was 483 μg/g. The thermodynamic experiments suggested that the adsorption reactions were spontaneous endothermic with a random approach at the adsorption interface. 25 mg/L of coexisting ions such as sulphate and phosphate reduced the sorbent As(V) removal ability to 65% and 39%. After seven cycles of adsorption/desorption, Al-KBC demonstrated satisfactory performance in terms of reusability, adsorbing 53% of 100 μg/L As(V) from the water. This novel BC can probably be used as a filter to purify groundwater with high As(V) concentration in the rural zone.
Collapse
Affiliation(s)
- Kanfolo Franck Herve Yeo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Yingying Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Tongxuan Xue
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Zhiwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Nan Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Ye Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Liu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Meiling Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Ange Nsilani Kouediatouka
- Key Laboratory of Education Ministry for Modern Design and Rotor Bearing Systems, Department of Mechanical Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | | | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China; Loess Plateau Eco-environment Restoration & Livable Villages Research Center, Xi'an, Shaanxi, 710000, PR China.
| |
Collapse
|
15
|
Aaga GF, Anshebo ST. Green synthesis of highly efficient and stable copper oxide nanoparticles using an aqueous seed extract of Moringa stenopetala for sunlight-assisted catalytic degradation of Congo red and alizarin red s. Heliyon 2023; 9:e16067. [PMID: 37215876 PMCID: PMC10196866 DOI: 10.1016/j.heliyon.2023.e16067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental pollution by organic pollutants because of population growth and industrial expansion is a global concern. Following this, the fabrication of single and efficient nanomaterials for pollution control is highly demanded. Under this study, highly efficient and stable copper oxide nanoparticles (CuO NPs) were synthesized through the green method using Moringa stenopetala seed extract. XRD, UV-vis, FT-IR, and SEM were applied to characterize the synthesized material. From XRD data, the average particle size was found to be 6.556 nm, and the nanoparticles are crystalline in nature. The formation of CuO NPs was demonstrated by FT-IR spectra of Cu-O in different bending vibration bands at 535 cm-1 and 1122 cm-1, as well as stretching vibration of Cu-O at 1640 cm-1. From UV-visible spectroscopic measurements, the energy band gap of greenly synthesized CuO NPs was found to be 1.73 eV. The SEM result shows that the nanoparticles' surfaces are rough, with some of the particles having spherically random orientation. The photodegradation efficiency of green synthesized CuO NPs photocatalyst was found to be 98.35% for Congo red at optimum experimental parameters (initial concentration, 25 mg/L; exposure time, 120 min; catalyst dose, 0.2 g; and pH, 5) and 95.4% for Alizarin Red S at optimum experimental parameters (catalyst dose, 0.25 g; initial concentration, 40 mg/L; exposure time, 120 min; and pH, 4.6). The COD values determined for the degraded product strongly support the complete mineralization of the dyes toward nontoxic materials. Reusability of the catalyst was investigated for five cycles, and the results clearly indicate the green synthesized CuO NPs are highly stable, can be used for several times, and are cost-effective as well. The degradation of Congo red and Alizarin red S on the surface of the CuO NPs follows the MBG kinetic model.
Collapse
Affiliation(s)
- Gemechu Fikadu Aaga
- College of Natural and Computational Sciences, Department of Chemistry, Dilla University, Dilla Ethiopia
| | - Sisay Tadesse Anshebo
- College of Natural and Computational Sciences, Department of Chemistry, Hawassa University, Hawassa Ethiopia
| |
Collapse
|
16
|
Baghersad MH, Maleki A, Khodabakhshi MR. Design and development of novel magnetic Lentinan/PVA nanocomposite for removal of diazinon, malathion, and diclofenac contaminants. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104193. [PMID: 37229922 DOI: 10.1016/j.jconhyd.2023.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Increasing population growth and rapid expansion of the industrialization of the world society have caused severe environmental pollution to the planet. This study was carried out in order to investigate the synthesis of biopolymeric texture nano adsorbent based on the Lentinan (LENT), Poly Vinyl Alcohol (PVA) and Iron Oxide nanoparticles for the removal of environmental pollutants. The spherical structural morphology of Fe3O4@LENT/PVA nanocomposite has been determined by FE-SEM analyses. According to the obtained results from FTIR analyses, all absorption bands of the Fe3O4, LENT, and PVA, had been existed in nanocomposite and approved the successful formation of it. From EDS analysis, it has been revealed that 57.21 wt% Fe, 17.56 wt% C and 25.23 wt% O. Also, the XRD pattern of the nanocomposite, approved the presence of polymeric and magnetic parts with card no. JCPDS, 01-075-0033. The BET analysis has defined specific surface area (47 m2/g) and total pore volume (0.15 cm3/g). Moreover, high heterogeneity and structural stability of the fabricated Fe3O4@LENT/PVA nanocomposite have been proven by TGA. Besides, VSM analysis measured great magnetic property of the nanocomposite (48 emu/g). Also, the Fe3O4@LENT/PVA nanocomposite potential for effective removal of malathion (MA), Diazinon (DA), and Diclofenac (DF) from watery solution has studied by an experiment based on the efficacy of adsorbent dosage, pH, and temperature. The adsorption kinetics of three pollutants had investigated using pseudo-first-order (PFO), pseudo-second-order (PSO) and intra-particle diffusion (IPD) velocity equations, the results showed that the kinetics followed PSO velocity equations. Also, the Langmuir, Freundlich, Dubbin-Radushkevich (D-R) and Temkin isotherm models had investigated, and the adsorption isotherm was adopted from the Langmuir model. The results demonstrated that in the presence of Fe3O4@LENT/PVA nanocomposite, at the optimal conditions (contact time = 180 min, pH = 5, nanocomposite dosage = 0.20 g/L and temperature of 298 K) the maximum adsorption capacity of MA, DF, and DA were 101.57, 153.28, and 102.75 mg/g, respectively. The antibacterial features of the Fe3O4@LENT/PVA nanocomposite, had evaluated by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, but the result did not show any antibacterial activity.
Collapse
Affiliation(s)
- Mohammad Hadi Baghersad
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Square, Mollasadra Ave, P.O. Box 19945-546, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran.
| | - Mohammad Reza Khodabakhshi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Square, Mollasadra Ave, P.O. Box 19945-546, Tehran, Iran.
| |
Collapse
|
17
|
Enhanced removal of anionic Methyl Orange azo dye by an Iron oxide (Fe3O4) loaded Lotus leaf powder (LLP@Fe3O4) composite: Synthesis, characterization, kinetics, isotherms, and thermodynamic perspectives. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
18
|
Rubangakene NO, Elkady M, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels. ENVIRONMENTAL RESEARCH 2023; 220:115272. [PMID: 36634893 DOI: 10.1016/j.envres.2023.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The conversion of agricultural waste into high-value carbon products has been an attractive area in waste management strategy. This study highlighted the synthesis and effectiveness of green pea peels (GPP), green pea biochar (GPBC), and nano-ferromagnetic green pea biochar (NFGPBC) by the ferrous/ferric co-precipitation synthesis method for eliminating cationic dyes molecules from solutions. The morphological, physicochemical, and structural properties of GPP, GPBC, and NFGPBC were approved by Scanning Electron Microscopy (SEM), Transmission Emission Microscopy (TEM), Energy Dispersive X-ray (EDX), Bruneau Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction (XRD) techniques. Vibrating Sample Magnetometry (VSM) analysis confirmed the NFGPBC magnetization performance. The capacity of each adsorbent for methylene blue removal was evaluated at various parameters of material dosage (50-250 mg/150 mL), pH (2-12), initial concentration (50-250 mg/L), contact time (0-90 min) and temperature (20-60 °C). The three developed adsorbent materials GPP, GPBC, and NFGPBC, possessed reasonable BET surface areas of 0.6836, 372.54, and 147.88 m2g-1, and the corresponding monolayer adsorption capacities of 163.93, 217.40, and 175.44 mg/g, respectively. The superior performances of GPBC and NFGPBC were due to their increased surface area compared with the parent green pea peels (GPP). The results from adsorption kinetics studies of all prepared materials were pseudo-second-order and Elovich kinetics models. The thermodynamic parameters exhibited MB sorption's favorability, spontaneity, and endothermic nature. The NFGPBC material experienced Vander Waal forces, electrostatic interaction, hydrogen bonding, and hydrophobic interactions as predominant modes of the solid-liquid interaction. The regeneration, recycling, and reusability of the synthesized GPP, GPBC, and NFGPBC performed at five adsorption cycles revealed that NFGPBC demonstrated excellent cyclical performances attaining a minimum 8.9% loss in capacity due to paramagnetic properties. Thus, NFGPBC is a green, efficient, and eco-friendly material recommended for large-scale production and application in wastewater.
Collapse
Affiliation(s)
- Norbert Onen Rubangakene
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt.
| | - Marwa Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt; Fabrication Technologies Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA- City), Egypt
| | - Ahmed Elwardany
- Energy Resources Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab, 21934, Egypt; Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro- Ku, Tokyo, 152-8552, Japan
| | - H Sekiguchi
- Chemical Science and Engineering Department, Tokyo Institute of Technology, S-4, 2-12-1 Ookayama, Meguro- Ku, Tokyo, 152-8552, Japan
| | - Hassan Shokry
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST, New Borg El- Arab City, 21934, Alexandria, Egypt; Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA- City), Egypt.
| |
Collapse
|
19
|
Choudhry A, Sharma A, Siddiqui SI, Ahamad I, Sajid M, Khan TA, Chaudhry SA. Origanum vulgare manganese ferrite nanocomposite: An advanced multifunctional hybrid material for dye remediation. ENVIRONMENTAL RESEARCH 2023; 220:115193. [PMID: 36587717 DOI: 10.1016/j.envres.2022.115193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to fabricate sustainable and cost-effective material for the thorough cleansing of polluted water. In this context, an economical, phytogenic and multifunctional Origanum vulgare plant-based nanocomposite material, MnFe2O4/OV, was prepared via one-pot synthetic technique. The synthesized nanocomposite with a band gap of 2.02 eV behaved as an efficient nano-photocatalyst for the degradation of both cationic (crystal violet) and anionic (congo red) dyes under direct sunlight irradiation. The material also inhibited the growth of E. coli and S. aureus bacteria and simultaneously adsorbed both cationic and anionic dyes from water through adsorption. A variety of techniques have been used to characterize the nanocomposite, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Additionally, the kinetics of photodegradation of the aforementioned organic dyes has also been investigated. The MnFe2O4/OV exhibited excellent photocatalytic performance, leading to 43% and 72% degradation within 3 h at rate constants of 2.0 × 10-3 min-1 and 6.0 × 10-3 min-1 for crystal violet and congo red, respectively. The crystal violet and congo red were used to testify to the composite's potential for adsorption under the influence of several process variables, including initial solution pH, contact time, temperature, initial dye concentration, and amount of MnFe2O4/OV. The Langmuir maximum adsorption capacity Qmax as in the range 14.06-14.59 mgg-1 for crystal violet and 34.45-23.93 mgg-1 for congo red at pH 7 within 90 min contact time in the temperature range of 30-50 °C. The phenomenon of adsorption was found feasible and endothermic at all the investigated temperatures. Also, E. coli and S. Aureus bacteria have shown growth suppression activity when exposed to MnFe2O4/OV.As a result, the synthesized nanocomposite, MnFe2O4/OV, proved to be an antimicrobial, multifunctional novel nanocomposite, which is in high demand, and could serve as an affordable, and sustainable material for comprehensive water filtration.
Collapse
Affiliation(s)
- Arshi Choudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Atul Sharma
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | - Irshad Ahamad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Sajid
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | | |
Collapse
|
20
|
Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH. Tropical fruit wastes including durian seeds and rambutan peels as a precursor for producing activated carbon using H 3PO 4-assisted microwave method: RSM-BBD optimization and mechanism for methylene blue dye adsorption. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1567-1578. [PMID: 36794599 DOI: 10.1080/15226514.2023.2175780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
Collapse
Affiliation(s)
| | - Ahmed Saud Abdulhameed
- Department of Medical Instrumentation Engineering, Al-Mansour University College, Baghdad, Iraq
- College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Australia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
21
|
Yang J, Wang Y, Zuo R, Zhang K, Li C, Song Q, Du X. Research on Risk Assessment and Contamination Monitoring of Potential Toxic Elements in Mining Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3163. [PMID: 36833857 PMCID: PMC9963655 DOI: 10.3390/ijerph20043163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Potentially toxic element (PTE) contamination in soils has serious impacts on ecosystems. However, there is no consensus in the field of assessment and monitoring of contaminated sites in China. In this paper, a risk assessment and pollution monitoring method for PTEs was proposed and applied to a mining site containing As, Cd, Sb, Pb, Hg, Ni, Cr, V, Zn, Tl, and Cu. The comprehensive scoring method and analytical hierarchical process were used to screen the priority PTEs for monitoring. The potential ecological risk index method was used to calculate the risk index of monitoring point. The spatial distribution characteristics were determined using semi-variance analysis. The spatial distribution of PTEs was predicted using ordinary kriging (OK) and radial basis function (RBF). The results showed that the spatial distribution of As, Pd, and Cd are mainly influenced by natural factors, while Sb and RI are influenced by both natural and human factors. OK has higher spatial prediction accuracy for Sb and Pb, and RBF has higher prediction accuracy for As, Cd, and RI. The areas with high ecological risk and above are mainly distributed on both sides of the creek and road. The optimized long-term monitoring sites can achieve the monitoring of multiple PTEs.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yunlong Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Kunfeng Zhang
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Chunxing Li
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Xianyuan Du
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| |
Collapse
|
22
|
Sharma A, Rasheed S, Mangla D, Choudhry A, Shukla S, Chaudhry SA. Cobalt Ferrite Incorporated
Ocimum sanctum
Nanocomposite Matrix as an Interface for Adsorption of Organic Dyes: A Sustainable Alternative. ChemistrySelect 2023. [DOI: 10.1002/slct.202203709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Atul Sharma
- Environmental Chemistry Research Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Shoaib Rasheed
- Environmental Chemistry Research Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Divyanshi Mangla
- Bio/Polymer Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Arshi Choudhry
- Environmental Chemistry Research Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Sneha Shukla
- Environmental Chemistry Research Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Saif Ali Chaudhry
- Environmental Chemistry Research Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
23
|
Zhao K, Zhang Y. Effective and continuous degradation of pollutants via carbon felt loaded with Co3O4 as three-dimensional electrode: Collaboration between ROS. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Abdelfatah AM, El-Maghrabi N, Mahmoud AED, Fawzy M. Synergetic effect of green synthesized reduced graphene oxide and nano-zero valent iron composite for the removal of doxycycline antibiotic from water. Sci Rep 2022; 12:19372. [PMID: 36371519 PMCID: PMC9652592 DOI: 10.1038/s41598-022-23684-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, the synthesis of an rGO/nZVI composite was achieved for the first time using a simple and green procedure via Atriplex halimus leaves extract as a reducing and stabilizing agent to uphold the green chemistry principles such as less hazardous chemical synthesis. Several tools have been used to confirm the successful synthesis of the composite such as SEM, EDX, XPS, XRD, FTIR, and zeta potential which indicated the successful fabrication of the composite. The novel composite was compared with pristine nZVI for the removal aptitude of a doxycycline antibiotic with different initial concentrations to study the synergistic effect between rGO and nZVI. The adsorptive removal of bare nZVI was 90% using the removal conditions of 25 mg L-1, 25 °C, and 0.05 g, whereas the adsorptive removal of doxycycline by the rGO/nZVI composite reached 94.6% confirming the synergistic effect between nZVI and rGO. The adsorption process followed the pseudo-second order and was well-fitted to Freundlich models with a maximum adsorption capacity of 31.61 mg g-1 at 25 °C and pH 7. A plausible mechanism for the removal of DC was suggested. Besides, the reusability of the rGO/nZVI composite was confirmed by having an efficacy of 60% after six successive cycles of regeneration.
Collapse
Affiliation(s)
- Ahmed M Abdelfatah
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|