1
|
Sampieri-Morán JM, Bravo-Alfaro DA, Uribe-Lam E, Luna-Barcenas G, Montiel-Sánchez M, Velasco-Rodríguez LDC, Acosta-Osorio AA, Ferrer M, García HS. Delivery of Magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of Honokiol and Magnolol. Eur J Pharm Biopharm 2025; 208:114627. [PMID: 39761833 DOI: 10.1016/j.ejpb.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/23/2025]
Abstract
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential. Nanoemulsions (NE) have been suggested to enhance their solubility in the oily core and enable passive diffusion through absorptive cells. Surfactants ensure stability by reducing surface tension between hydrophobic and hydrophilic compounds. In this study we report the preparation of NE containing HK and MG using high and low-energy methods (SNEDDS); we aimed to improve their absorption after oral administration. Results demonstrated that NE enhanced their bioavailability significantly. Compared to the free forms, HK bioavailability increased by 3.47 times, and MG by 3.03 times. SNEDDS further increased HK bioavailability by 3.98 times and MG by 7.97 times compared to their free forms.
Collapse
Affiliation(s)
- Jessica M Sampieri-Morán
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Diego A Bravo-Alfaro
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Gabriel Luna-Barcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, Mexico
| | - Mara Montiel-Sánchez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Luz Del C Velasco-Rodríguez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Andrés A Acosta-Osorio
- CONAHCYT-Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
2
|
Bodnár K, Papp B, Sinka D, Fehér P, Ujhelyi Z, Lekli I, Kajtár R, Nacsa F, Bácskay I, Józsa L. Development of Salvia officinalis-Based Self-Emulsifying Systems for Dermal Application: Antioxidant, Anti-Inflammatory, and Skin Penetration Enhancement. Pharmaceutics 2025; 17:140. [PMID: 40006508 PMCID: PMC11858885 DOI: 10.3390/pharmaceutics17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The present study focused on the formulation and evaluation of novel topical systems containing Salvia officinalis (sage), emphasizing their antioxidant and anti-inflammatory properties. Sage, rich in carnosol, offers considerable therapeutic potential, yet its low water solubility limits its effectiveness in traditional formulations. The aim of our experimental work was to improve the solubility and thus bioavailability of the active ingredient by developing self-nano/microemulsifying drug delivery systems (SN/MEDDSs) with the help of Labrasol and Labrafil M as the nonionic surfactants, Transcutol HP as the co-surfactant, and isopropyl myristate as the oily phase. METHODS The formulations were characterized for droplet size, zeta potential, polydispersity index (PDI), encapsulation efficacy, and stability. The composition exhibiting the most favorable characteristics, with particle sizes falling within the nanoscale range, was incorporated into a cream and a gel, which were compared for their textural properties, carnosol penetration, biocompatibility and efficacy. RESULTS Release studies conducted using Franz diffusion cells demonstrated that the SNEDDS-based cream achieved up to 80% carnosol release, outperforming gels. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and enzyme-linked immunosorbent assays (ELISA) showed strong efficacy, with an in vivo carrageenan-induced rat paw edema model revealing that the SNEDDS-based cream significantly reduced inflammation. CONCLUSIONS These findings highlight the potential of SNEDDS-enhanced topical formulations in improving therapeutic outcomes. Further research is warranted to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Boglárka Papp
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - István Lekli
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Richárd Kajtár
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Fruzsina Nacsa
- MEDITOP Pharmaceutical Ltd., Pilisborosjeno Ady Endre Street 1, 2097 Pilisborosjeno, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (K.B.); (B.P.); (D.S.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary; (I.L.); (R.K.)
| |
Collapse
|
3
|
Baek K, Woo MR, ud Din F, Choi YS, Kang MJ, Kim JO, Choi HG, Jin SG. Comparison of Solid Self-Nanoemulsifying Systems and Surface-Coated Microspheres: Improving Oral Bioavailability of Niclosamide. Int J Nanomedicine 2024; 19:13857-13874. [PMID: 39735329 PMCID: PMC11681811 DOI: 10.2147/ijn.s494083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide. Methods A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS. Surface-coated microspheres were prepared using sodium alginate and poloxamer 407 and optimized through solubility and dissolution tests. Scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction were used to evaluate the physicochemical properties of the prepared solid SNEDDS, surface-coated microspheres, and the drug alone. The solubility, dissolution, and oral bioavailability were also assessed. Results Physicochemical evaluation demonstrated that niclosamide was converted to an amorphous state in the Solid SNEDDS formulation, with enhanced solubility and oral bioavailability. In comparison to niclosamide alone, solid SNEDDS exhibited an increase in drug solubility (approximately 2500-fold vs 158-fold) and oral bioavailability (approximately 10-fold vs 1.65-fold), significantly outperforming surface-coated microspheres. Conclusion This solid SNEDDS formulation may be an excellent candidate for niclosamide with improved oral bioavailability for repurposing.
Collapse
Affiliation(s)
- Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| |
Collapse
|
4
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Prokhorov Y, Pérez-Robles JF, Sampieri-Moran JM, García-Casillas PE, Paul S, García HS, Luna-Bárcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug's bioavailability. Colloids Surf B Biointerfaces 2024; 245:114291. [PMID: 39368424 DOI: 10.1016/j.colsurfb.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Betulinic acid (BA) is a natural compound with significant potential for treating various diseases, including cancer and AIDS, and possesses additional anti-inflammatory and antibacterial properties. However, its clinical application is limited because of its low solubility in water, which impairs its distribution within the body. To overcome this challenge, nanoemulsions have been developed to improve the bioavailability of such poorly soluble drugs. This study investigated modified phosphatidylcholine (PC), where some fatty acids were replaced with conjugated linoleic acid (CLA) to stabilize BA nanoemulsions. The modified PC was used to prepare nanoemulsions with droplet sizes of up to 45 nanometers. These nanoemulsions maintained stability for 60 days at room temperature (25°C±2°C) and under refrigeration (5°C±1°C), with no signs of instability. Nanoemulsions stabilized with CLA-modified PC achieved a higher drug encapsulation rate (93.5±4.3 %) than those using natural PC (82.8±4.2 %). In an in vivo model, both nanoemulsion formulations significantly increased BA absorption, with CLA-modified PC enhancing absorption by 21.3±1.3 times and natural PC by 20±2.3 times compared to the free drug. This suggests that nanoemulsions with modified PC could improve the stability and efficacy of BA in clinical applications.
Collapse
Affiliation(s)
- Diego A Bravo-Alfaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico
| | - Laura R Ochoa-Rodríguez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Yevgen Prokhorov
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Juan Francisco Pérez-Robles
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Santiago de Querétaro, Qro, 76230, Mexico
| | - Jessica M Sampieri-Moran
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico
| | - Perla Elvia García-Casillas
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Coahuila 25294, Mexico
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., San Pablo, Querétaro CP 76130, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, M.A. de Quevedo 2779, col. Formando Hogar, Veracruz, Ver, 91897, Mexico.
| | - Gabriel Luna-Bárcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc., Qro., San Pablo, Querétaro 76130, Mexico.
| |
Collapse
|
5
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Mujtaba SH, Ghazy E, Arshad R, Aman W, Barkat K, Afzal S, Sadia H, Khan SA, Rahdar A, Behzadmehr R, Fathi-karkan S. Novel thiolated pluronic anchored gastro-retentive SEDDS of azithromycin against peptic ulcer. INORG CHEM COMMUN 2024; 167:112755. [DOI: 10.1016/j.inoche.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
7
|
Mahajan RR, Ravi PR, Marathe RK, Dongare AG, Prabhu AV, Szeleszczuk Ł. Design and Evaluation of Clove Oil-Based Self-Emulsifying Drug Delivery Systems for Improving the Oral Bioavailability of Neratinib Maleate. Pharmaceutics 2024; 16:1087. [PMID: 39204432 PMCID: PMC11358973 DOI: 10.3390/pharmaceutics16081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Neratinib maleate (NM), a tyrosine kinase inhibitor, is used in the treatment of breast cancer. NM is orally administered at a high dose of 290 mg due to its low solubility and poor dissolution rate at pH > 3, as well as gut-wall metabolism limiting its bioavailability. Self-emulsifying drug delivery systems (SEDDSs) of NM were developed in the current study to improve its oral bioavailability. The oily vehicle (clove oil) was selected based on the solubility of NM, while the surfactant and the cosurfactant were selected based on the turbidimetric analysis. Three different sets were screened for surfactant selection in the preparation of SEDDS formulations, the first set containing Cremophor® EL alone as the surfactant, the second set containing a mixture of Cremophor® EL (surfactant) and Caproyl® PGMC (cosurfactant), and the third set containing a mixture of Cremophor® EL (surfactant) and Capmul® MCM C8 (cosurfactant). Propylene glycol was used as the cosolubilizer in the preparation of SEDDSs. A series of studies, including the construction of ternary phase diagrams to determine the zone of emulsification, thermodynamic stability studies (involving dilution studies, freeze-thaw, and heating-cooling studies), turbidimetric analysis, and physicochemical characterization studies were conducted to identify the two most stable combinations of SEDDSs. The two optimized SEDDS formulations, TP16 and TP25, consisted of clove oil (45% w/w) and propylene glycol (5% w/w) in common but differed with respect to the surfactant or surfactant mixture in the formulations. TP16 was prepared using a mixture of Cremophor® EL (surfactant) and Caproyl® PGMC (cosurfactant) in a 4:1 ratio (50% w/w), while TP25 contained only Cremophor® EL (50% w/w). The mean globule sizes were 239.8 ± 77.8 nm and 204.8 ± 2.4 nm for TP16 and TP25, respectively, with an emulsification time of <12 s for both formulations. In vitro drug dissolution studies performed at different pH conditions (3.0, 4.5, 6.8) have confirmed the increase in solubility and dissolution rate of the drug by TP16 and TP25 at all pH conditions compared to plain NM. An oral pharmacokinetic study in female Wistar rats showed that the relative bioavailability (Frel) values of TP16 and TP25 over the plain NM were 2.18 (p < 0.05) and 2.24 (p < 0.01), respectively.
Collapse
Affiliation(s)
- Radhika Rajiv Mahajan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Riya Kamlesh Marathe
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Ajay Gorakh Dongare
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Apoorva Vinayak Prabhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India; (R.R.M.); (R.K.M.); (A.G.D.); (A.V.P.)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| |
Collapse
|
8
|
Farzan M, Farzan M, Shahrani M, Navabi SP, Vardanjani HR, Amini-Khoei H, Shabani S. Neuroprotective properties of Betulin, Betulinic acid, and Ursolic acid as triterpenoids derivatives: a comprehensive review of mechanistic studies. Nutr Neurosci 2024; 27:223-240. [PMID: 36821092 DOI: 10.1080/1028415x.2023.2180865] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Cognitive deficits are the main outcome of neurological disorders whose occurrence has risen over the past three decades. Although there are some pharmacologic approaches approved for managing neurological disorders, it remains largely ineffective. Hence, exploring novel nature-based nutraceuticals is a pressing need to alleviate the results of neurodegenerative diseases, such as Alzheimer's disease (AD) and other neurodegenerative disorders. Some triterpenoids and their derivates can be considered potential therapeutics against neurological disorders due to their neuroprotective and cognitive-improving effects. Betulin (B), betulinic acid (BA), and ursolic acid (UA) are pentacyclic triterpenoid compounds with a variety of biological activities, including antioxidative, neuroprotective and anti-inflammatory properties. This review focuses on the therapeutic efficacy and probable molecular mechanisms of triterpenoids in damage prevention to neurons and restoring cognition in neurodegenerative diseases. Considering few studies on this concept, the precise mechanisms that mediate the effect of these compounds in neurodegenerative disorders have remained unknown. The findings can provide sufficient information about the advantages of these compounds against neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mehrdad Shahrani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossien Rajabi Vardanjani
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
9
|
Andze L, Vitolina S, Berzins R, Rizikovs J, Godina D, Teresko A, Grinberga S, Sevostjanovs E, Cirule H, Liepinsh E, Paze A. Innovative Approach to Enhance Bioavailability of Birch Bark Extracts: Novel Method of Oleogel Development Contrasted with Other Dispersed Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:145. [PMID: 38202453 PMCID: PMC10780823 DOI: 10.3390/plants13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Birch outer bark extract (BBE), containing pentacyclic triterpenes such as betulin, lupeol, and betulinic acid, is a widely recognized natural product renowned for its diverse pharmacological effects. However, its limited water solubility restricts its bioavailability. Therefore, the main objective is to enhance the bioavailability of BBE for pharmaceutical use. In this study, we aimed to develop a dispersion system utilizing a unique oleogel-producing method through the recrystallization of BBE from an ethanol solution in the oil phase. We generated an oleogel that demonstrates a notable 42-80-fold improvement in betulin and lupeol peroral bioavailability from BBE in Wistar rats, respectively. A physical paste-like BBE hydrogel developed with antisolvent precipitation showed a 16-56-fold increase in the bioavailability of betulin and lupeol from BBE in rat blood plasma, respectively. We also observed that the repeated administration of the BBE oleogel did not exhibit any toxicity at the tested dose (38.5 mg/kg betulin, 5.2 mg/kg lupeol, 1.5 mg/kg betulinic acid daily for 7 days). Betulin and betulinic acid were not detected in rat heart, liver, kidney, or brain tissues after the peroral administration of the oleogel daily for 7 days. Lupeol was found in rat heart, liver, and kidney tissues.
Collapse
Affiliation(s)
- Laura Andze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
- ZS DOKTUS, 22 Pavila Street, LV-4101 Cesis, Latvia;
| | - Sanita Vitolina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Rudolfs Berzins
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Janis Rizikovs
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | - Daniela Godina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| | | | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Eduards Sevostjanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Helena Cirule
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006 Riga, Latvia; (S.G.); (E.S.); (H.C.); (E.L.)
| | - Aigars Paze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Street, LV-1006 Riga, Latvia; (S.V.); (R.B.); (J.R.); (D.G.); (A.P.)
| |
Collapse
|
10
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
11
|
Torres-Martinez Z, Pérez D, Torres G, Estrada S, Correa C, Mederos N, Velazquez K, Castillo B, Griebenow K, Delgado Y. A Synergistic pH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC. BIOTECH 2023; 12:13. [PMID: 36810440 PMCID: PMC9944877 DOI: 10.3390/biotech12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Nanosized drug delivery systems (DDS) have been studied as a novel strategy against cancer due to their potential to simultaneously decrease drug inactivation and systemic toxicity and increase passive and/or active drug accumulation within the tumor(s). Triterpenes are plant-derived compounds with interesting therapeutic properties. Betulinic acid (BeA) is a pentacyclic triterpene that has great cytotoxic activity against different cancer types. Herein, we developed a nanosized protein-based DDS of bovine serum albumin (BSA) as the drug carrier combining two compounds, doxorubicin (Dox) and the triterpene BeA, using an oil-water-like micro-emulsion method. We used spectrophotometric assays to determine protein and drug concentrations in the DDS. The biophysical properties of these DDS were characterized using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy, confirming nanoparticle (NP) formation and drug loading into the protein structure, respectively. The encapsulation efficiency was 77% for Dox and 18% for BeA. More than 50% of both drugs were released within 24 h at pH 6.8, while less drug was released at pH 7.4 in this period. Co-incubation viability assays of Dox and BeA alone for 24 h demonstrated synergistic cytotoxic activity in the low μM range against non-small-cell lung carcinoma (NSCLC) A549 cells. Viability assays of the BSA-(Dox+BeA) DDS demonstrated a higher synergistic cytotoxic activity than the two drugs with no carrier. Moreover, confocal microscopy analysis confirmed the cellular internalization of the DDS and the accumulation of the Dox in the nucleus. We determined the mechanism of action of the BSA-(Dox+BeA) DDS, confirming S-phase cell cycle arrest, DNA damage, caspase cascade activation, and downregulation of epidermal growth factor receptor (EGFR) expression. This DDS has the potential to synergistically maximize the therapeutic effect of Dox and diminish chemoresistance induced by EGFR expression using a natural triterpene against NSCLC.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Daraishka Pérez
- Neuroscience Department, Universidad Central del Caribe, Bayamon 00960, Puerto Rico
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico—Cayey, Cayey 00736, Puerto Rico
| | - Clarissa Correa
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Natasha Mederos
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Kimberly Velazquez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| | - Betzaida Castillo
- Chemistry Department, University of Puerto Rico—Humacao, Humacao 00727, Puerto Rico
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico
| |
Collapse
|
12
|
Bravo Alfaro D, Prokhorov E, Luna Barcenas G, García H. Unveiling the dielectric properties of self-nanoemulsifying drug delivery systems (SNEDDS). J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Konovalova V, Kolesnyk I, Savchenko M, Marynin A, Bubela H, Kujawa J, Knozowska K, Kujawski W. Preparation of Chitosan Water-In-Oil Emulsions by Stirred Cell Membrane Emulsification. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Sardar A, Gautam S, Sinha S, Rai D, Tripathi AK, Dhaniya G, Mishra PR, Trivedi R. Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci 2022; 309:121020. [PMID: 36191680 DOI: 10.1016/j.lfs.2022.121020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
AIMS Postmenopausal osteoporosis is one of the world's biggest yet unnoticed health issues. After ovariectomy, declined estrogen level significantly contributes to the elevation of bone marrow adiposity and bone loss leading to osteoporosis. Therapeutics to prevent osteoporosis addressing various aspects are now in short supply. In this study we made an approach to synthesize nanoparticles of naturally occurring PPAR-γ inhibitor, betulinic acid (BA/NPs) and tested the same in altered bone metabolisms developed after ovariectomy. MAIN METHODS The osteogenic efficacy of BA/NPs was established in human and rat primary osteoblast cells using qRT-PCR and immunoblot analysis. Furthermore, lineage allocations of multipotent bone marrow stromal cells were evaluated. Various aspects of altered bone metabolism after ovariectomy such as bone marrow adiposity and pathological bone loss were evaluated using μCT and histological assessments. KEY FINDINGS BA/NPs exert potential osteogenic efficacy by modulating RUNX2 and BMP2. Mechanistically BA/NPs regulate osteoblastogenesis through Wnt/β-catenin signaling. Further, BA/NPs showed the potential to inhibit the differentiation of multipotent BMSCs towards adipogenesis while favouring the osteogenic lineage. In the in vivo study, increased bone marrow adiposity was reduced in ovariectomized rats after BA/NPs treatment as assessed by histology and μCT analysis. Loss of bone mineral density as a hallmark of pathological bone loss was also abrogated by BA/NPs. SIGNIFICANCE Our findings imply that BA/NPs could be used further as a viable drug lead to counteract various pathophysiological challenges after menopause.
Collapse
Affiliation(s)
- Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Gautam
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Sinha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Rai
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Geeta Dhaniya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|