1
|
Zhao L, Li C, Li H, Shu Z, Luo Y, Yang H, Chen Q, Xu W, Zhang W, Tan X. Efficient Cr(VI) removal by pyrite/porous biochar: Critical role of potassium salt and sulphur. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123641. [PMID: 38428791 DOI: 10.1016/j.envpol.2024.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The excessive accumulation of hexavalent chromium (Cr(VI)) in the environment poses a risk to environment and human health. In the present study, a potassium bicarbonate-modified pyrite/porous biochar composite (PKBC) was prepared in a one-step process and applied for the efficient removal of Cr(VI) in wastewater. The results showed that PKBC can significantly remove Cr(VI) within 4 h over a wide range of pH (2-11). Meanwhile, the PKBC demonstrated remarkable resistance towards interference from complex ions. The addition of potassium bicarbonate increased the pore structure of the material and promoted the release of Fe2+. The reduction of Cr(VI) in aqueous solution was primarily attributed to the Fe(II)/Fe(III) redox cycle. The sulphur species achieved Fe(II)/Fe(III) cycle through electron transfer with iron, thus ensuring the continuous reduction capacity of PKBC. Besides, the removal rate was also maintained at more than 85% in the actual water samples treatment process. This work provides a new way to remove hexavalent chromium from wastewater and demonstrates the potential critical role of potassium bicarbonate and sulphur.
Collapse
Affiliation(s)
- Lei Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China
| | - Hong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China
| | - Zihan Shu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China
| | - Yang Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Shenzhen Research Institute of Hunan University, Shenzhen, 518055, PR China.
| |
Collapse
|
2
|
Xiong L, Zhang F, Yang Y, Ding Y, Chen S. Preparation of a novel polypyrrole/dolomite composite adsorbent for efficient removal of Cr(VI) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21279-21290. [PMID: 38388974 DOI: 10.1007/s11356-024-32526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
A novel adsorbent, deposited PPy on the DMI (PPy/DMI) composite, was successfully synthesized for Cr(VI) removal from aqueous solution. PPy/DMI composite was characterized by BET, SEM, TEM, XRD, and XPS. The SEM and TEM analyses revealed that DMI can greatly reduce the aggregation of PPy and significantly enhance its adsorption performance. The Cr(VI) removal was highly pH dependent. The high selectivity of PPy/DMI composite for Cr(VI) removal was found even in the presence of co-existing ions. The adsorption kinetic process followed the pseudo-second-order equation, demonstrating that the Cr(VI) adsorption behavior onto PPy/DMI is chemisorption. Furthermore, the intra-particle diffusion model implied that the adsorption was controlled by both liquid membrane diffusion and internal diffusion. The adsorption isotherm data fitted well with the Langmuir model with the maximum adsorption capacity (406.50 mg/g at 323 K) which was considerably higher than that of other PPy-based adsorbents. The Cr(VI) adsorption onto PPy/DMI composite was endothermic. The main mechanisms of Cr(VI) removal are involved in adsorption through electrostatic attractions, ion exchange, and in situ reduction. The results suggested that PPy/DMI composite could be a promising candidate for efficient Cr(VI) removal from aqueous solution.
Collapse
Affiliation(s)
- Ling Xiong
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Fen Zhang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yanan Yang
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Yuqing Ding
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China
| | - Shaohua Chen
- College of Resources and Environment, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Milakin KA, Taboubi O, Hromádková J, Bober P. Magnetic Polypyrrole-Gelatin-Barium Ferrite Cryogel as an Adsorbent for Chromium (VI) Removal. Gels 2023; 9:840. [PMID: 37888413 PMCID: PMC10606301 DOI: 10.3390/gels9100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Polypyrrole-gelatin aerogels, containing magnetic barium ferrite (BaFe) particles, (PPy-G-BaFe) were synthesized by oxidative cryopolymerization and used as adsorbents for the removal of Cr(VI) from aqueous media. The removal was performed at pH 4, which was shown to be the optimal value, due to HCrO4- being the dominant species in these conditions and its more favorable adsorption and reduction compared to CrO42-, present at pH > 4. It was found that the presence of magnetic BaFe particles had no effect on the adsorption performance of PPy aerogels in terms of capacity and kinetics, which was attributed to its relatively low content in the composite. After the adsorption, the presence of chromium in the composites was confirmed by EDX and its electrostatic interaction with the adsorbent was pointed at by vibrational spectroscopy, corresponding to the accepted adsorption mechanism. The adsorption kinetics followed the pseudo-second-order model pointing at chemisorption being the rate-limiting step. The adsorption isotherm data was best fitting with the Temkin model. The maximum adsorption capacity, calculated using the Langmuir model, was 255.8 mg g-1 (the maximum experimental value was 161.6 mg g-1). Additionally, the possibility of Cr(VI) adsorption in the presence of Cl-, Br-, NO3- and SO42- as interfering ions was shown.
Collapse
Affiliation(s)
| | | | | | - Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic; (K.A.M.); (O.T.); (J.H.)
| |
Collapse
|
4
|
Popoola LT. Efficient Cr(VI) sequestration from aqueous solution by chemically modified Garcinia kola hull particles: characterization, isotherm, kinetic, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109751-109768. [PMID: 37777702 DOI: 10.1007/s11356-023-29848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
There is a need for the removal of hexavalent chromium from contaminated water prior to its discharge into the environment, as part of industrial effluents, due to its toxic nature. In this present study, an adsorbent prepared via chemical modification of Garcinia kola hull particles (GK-HP) using NaOH was applied for Cr(VI) sequestration from aqueous solution. Both the raw (rGK-HP) and chemically modified Garcinia kola hull particles (cMGK-HP) were characterized using BET, SEM, XRD, FTIR, TGA, and EDS. The effects of pH, contact time, adsorbent dose, adsorbate initial concentration, and temperature on Cr(VI) sequestration were examined. The adsorbent, cMGK-HP, proved to be more effective for the adsorption process than rGK-HP with 96.25% removal efficiency at a pH of 2, a contact time of 60 min, an adsorbent dose of 5 g/L, Cr(VI) initial concentration of 20 mg/L and a temperature of 40°C. Isotherm and kinetic studies showed experimental data to be well-fitted with Langmuir isotherm and follow the pseudo-second-order kinetic model. The thermodynamic study revealed adsorption nature to be feasible, occur via physisorption, spontaneous, and exothermic. Changes in morphological structure, textural property, spectral peak, phase composition, and chemical composition of adsorbents before and after Cr(VI) sequestration from solution were proved by SEM, BET, FTIR, XRD, and EDS analyses, respectively. cMGK-HP possessed excellent reusability attribute and high thermal stability as shown by TGA. In conclusion, the adsorption capacity of cMGK-HP is better than many other adsorbents generated from agrowastes used in previous studies for Cr(VI) removal.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| |
Collapse
|
5
|
Qu Z, Huang L, Guo M, Sun T, Xu X, Gao Z. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162840. [PMID: 36924972 DOI: 10.1016/j.scitotenv.2023.162840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Mengmeng Guo
- Jinan Ecological and Environmental Monitoring Center, Jinan 250000, China
| | - Ting Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoshen Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics of Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Zhong L, Li T, Zhang J, Chen S, Zhang D. A high-performance polymer hydrogel derived from konjac flying powder for removal of heavy metals. NEW J CHEM 2022. [DOI: 10.1039/d2nj03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Agricultural byproducts have excellent potential for pollutant remediation due to the low-cost and environmental sustainability.
Collapse
Affiliation(s)
- Liuyue Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Tingcheng Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Junheng Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| | - Shaohua Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|