1
|
Thomas X. Examining the safety and efficacy of imetelstat in low-risk myelodysplastic syndrome. Expert Opin Pharmacother 2025; 26:525-533. [PMID: 39989126 DOI: 10.1080/14656566.2025.2471518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION The aim of treatment in very low-, low- and intermediate-1-risk myelodysplastic syndrome (MDS) is mainly to relieve symptoms due to cytopenias. Only a few therapeutic drugs are currently available, but novel drugs are under clinical investigations. In this setting, imetelstat, a telomerase inhibitor, is a promising new agent. AREAS COVERED This review summarizes promising emerging strategies using imetelstat for the treatment of lower-risk MDS. EXPERT OPINION Favorable results were demonstrated in the IMerge phase 3 clinical trial using imetelstat in transfusion-dependent patients with lower-risk MDS relapsed or refractory to erythropoiesis-stimulating agents (ESAs). This study led to imetelstat approval by the United States Food and Drug Administration (FDA) in June 2024.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Department of Clinical Hematology, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
2
|
Murugan AK, Kannan S, Alzahrani AS. TERT promoter mutations in gliomas: Molecular roles in tumorigenesis, metastasis, diagnosis, prognosis, therapeutic targeting, and drug resistance. Biochim Biophys Acta Rev Cancer 2025; 1880:189243. [PMID: 39674418 DOI: 10.1016/j.bbcan.2024.189243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Telomerase reverse transcriptase (TERT), a critical player in cellular immortalization, has emerged as a focal point of investigation due to its frequent promoter mutations in various human malignancies. TERT promoter mutations exhibit a significant role in tumorigenesis, fostering unbridled cellular proliferation and survival. This comprehensive review delves into the landscape of TERT promoter mutations and their profound implications in cancer, particularly within the context of gliomas. This article meticulously examines the intricate interplay between TERT promoter mutations and the metastatic cascade, shedding light on their capacity to orchestrate invasive behavior in gliomas. Moreover, this review describes the recent trends in therapeutic targeting of the TERT and dissects the evolving landscape of drug resistance associated with TERT mutations, providing insights into potential therapeutic challenges. In addition, the diagnostic and prognostic implications of TERT promoter mutations in gliomas are scrutinized, unraveling their potential as robust biomarkers. It also discusses the recent advancements in molecular diagnostics, illustrating the promise of TERT mutations as diagnostic tools and prognostic indicators. This review collectively aims to contribute to a deeper understanding of TERT promoter mutations in gliomas, offering a foundation for future research endeavors and paving the way for innovative strategies in glioma management.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
3
|
Yun Z, Liu Z, Shen Y, Sun Z, Zhao H, Du X, Lv L, Zhang Y, Hou L. Genetic analysis from multiple cohorts implies causality between 2200 druggable genes, telomere length, and leukemia. Comput Biol Med 2024; 181:109064. [PMID: 39216403 DOI: 10.1016/j.compbiomed.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Clinical therapeutic targets for leukemia remain to be identified and the causality between leukemia and telomere length is unclear. METHODS This work employed cis expression quantitative trait locus (eQTL) for 2,200 druggable genes from the eQTLGen Consortium and genome-wide association studies (GWAS) summary data for telomere length in seven blood cell types from the UK Biobank, Netherlands Cohort as exposures. GWAS data for lymphoid leukemia (LL) and myeloid leukemia (ML) from FinnGen and Lee Lab were used as outcomes for discovery and replication cohorts, respectively. Robust Mendelian randomization (MR) findings were generated from seven MR models and a series of sensitivity analyses. Summary-data-based MR (SMR) analysis and transcriptome-wide association studies (TWAS) were further implemented to verify the association between identified druggable genes and leukemia. Single-cell type expression analysis was employed to identify the specific expression of leukemia casual genes on human bone marrow and peripheral blood immune cells. Multivariable MR analysis, linkage disequilibrium score regression (LDSC), and Bayesian colocalization analysis were performed to further validate the relationship between telomere length and leukemia. Mediation analysis was used to assess the effects of identified druggable genes affecting leukemia via telomere length. Phenome-wide MR (Phe-MR) analysis for assessing the effect of leukemia causal genes and telomere length on 1,403 disease phenotypes. RESULTS Combining the results of the meta-analysis for MR estimates from two cohorts, SMR and TWAS analysis, we identified five LL causal genes (TYMP, DSTYK, PPIF, GDF15, FAM20A) and three ML causal genes (LY75, ADA, ABCA2) as promising drug targets for leukemia. Univariable MR analysis showed genetically predicted higher leukocyte telomere length increased the risk of LL (odds ratio [OR] = 2.33, 95 % confidence interval [95 % CI] 1.70-3.18; P = 1.33E-07), and there was no heterogeneity and horizontal pleiotropy. Evidence from the meta-analysis of two cohorts strengthened this finding (OR = 1.88, 95 % CI 1.06-3.05; P = 0.01). Multivariable MR analysis showed the causality between leukocyte telomere length and LL without interference from the other six blood cell telomere length (OR = 2.72, 95 % CI 1.88-3.93; P = 1.23E-07). Evidence from LDSC supported the positive genetic correlation between leukocyte telomere length and LL (rg = 0.309, P = 0.0001). Colocalization analysis revealed that the causality from leukocyte telomere length on LL was driven by the genetic variant rs770526 in the TERT region. The mediation analysis via two-step MR showed that the causal effect from TYMP on LL was partly mediated by leukocyte telomere length, with a mediated proportion of 12 %. CONCLUSION Our study identified several druggable genes associated with leukemia risk and provided new insights into the etiology and drug development of leukemia. We also found that genetically predicted higher leukocyte telomere length increased LL risk and its potential mechanism of action.
Collapse
Affiliation(s)
- Zhangjun Yun
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhu Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yang Shen
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ziyi Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongbin Zhao
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaofeng Du
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Graduate School of Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Liyuan Lv
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yayue Zhang
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Li Hou
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
4
|
Wang Y, Liu Q, Liang S, Yao M, Zheng H, Hu D, Wang Y. Genetically predicted telomere length and the risk of 11 hematological diseases: a Mendelian randomization study. Aging (Albany NY) 2024; 16:4270-4281. [PMID: 38393686 PMCID: PMC10968687 DOI: 10.18632/aging.205583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Previous studies have demonstrated that various hematologic diseases (HDs) induce alterations in telomere length (TL). The aim of this study is to investigate whether genetically predicted changes in TL have an impact on the risk of developing HDs. METHODS GWAS data for TL and 11 HDs were extracted from the database. The R software package "TwoSampleMR" was employed to conduct a two-sample Mendelian randomization (MR) analysis, in order to estimate the influence of TL changes on the risk of developing the 11 HDs. RESULTS We examined the effect of TL changes on the risk of developing the 11 HDs. The IVW results revealed a significant causal association between genetically predicted longer TL and the risk of developing acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MANTLE), and hodgkin lymphoma (HODGKIN). However, there was no significant causal relationship observed between TL changes and the risk of developing chronic myeloid leukemia (CML), diffuse large b-cell lymphoma (DLBCL), marginal zone b-cell lymphoma (MARGINAL), follicular lymphoma (FOLLICULAR), monocytic leukemia (MONOCYTIC), and mature T/NK-cell lymphomas (TNK). CONCLUSIONS The MR analysis revealed a positive association between genetically predicted longer TL and an increased risk of developing ALL, AML, CLL, MANTLE, and HODGKIN. This study further supports the notion that cells with longer TL have greater proliferative and mutational potential, leading to an increased risk of certain HDs.
Collapse
Affiliation(s)
- Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shibing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Yao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongqing Hu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Wang Y, Chen Q, Shao H, Zhang R, Shen H. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation. Comput Biol Med 2024; 169:107828. [PMID: 38101117 DOI: 10.1016/j.compbiomed.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Large-scale high-throughput transcriptome sequencing data holds significant value in biomedical research. However, practical challenges such as difficulty in sample acquisition often limit the availability of large sample sizes, leading to decreased reliability of the analysis results. In practice, generative deep learning models, such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), have been proven to generate realistic data and may be used to solve this promblem. In this study, we utilized bulk RNA-Seq gene expression data to construct different generative models with two data preprocessing methods: Min-Max-GAN, Z-Score-GAN, Min-Max-DM, and Z-Score-DM. We demonstrated that the generated data from the Min-Max-GAN model exhibited high similarity to real data, surpassing the performance of the other models significantly. Furthermore, we trained the models on the largest dataset available to date, achieving MMD (Maximum Mean Discrepancy) of 0.030 and 0.033 on the training and independent datasets, respectively. Through SHAP (SHapley Additive exPlanations) explanations of our generative model, we also enhanced our model's credibility. Finally, we applied the generated data to data augmentation and observed a significant improvement in the performance of classification models. In summary, this study establishes a GAN-based approach for generating bulk RNA-Seq gene expression data, which contributes to enhancing the performance and reliability of downstream tasks in high-throughput transcriptome analysis.
Collapse
Affiliation(s)
- Yinglun Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, PR China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, PR China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, PR China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, PR China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, PR China.
| |
Collapse
|
6
|
Olschok K, Altenburg B, de Toledo MAS, Maurer A, Abels A, Beier F, Gezer D, Isfort S, Paeschke K, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. The telomerase inhibitor imetelstat differentially targets JAK2V617F versus CALR mutant myeloproliferative neoplasm cells and inhibits JAK-STAT signaling. Front Oncol 2023; 13:1277453. [PMID: 37941547 PMCID: PMC10628476 DOI: 10.3389/fonc.2023.1277453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Bianca Altenburg
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marcelo A. S. de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Anne Abels
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katrin Paeschke
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
7
|
Bertol BC, Massaro JD, Debortoli G, Santos ALP, de Araújo JNG, Giorgenon TMV, Costa e Silva M, de Figueiredo-Feitosa NL, Collares CVA, de Freitas LCC, Soares EG, Neder L, Silbiger VN, Calado RT, Maciel LMZ, Donadi EA. BRAF, TERT and HLA-G Status in the Papillary Thyroid Carcinoma: A Clinicopathological Association Study. Int J Mol Sci 2023; 24:12459. [PMID: 37569841 PMCID: PMC10419559 DOI: 10.3390/ijms241512459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
As BRAF, TERT, HLA-G, and microRNAs have been individually associated with papillary thyroid carcinoma (PTC), we aimed to evaluate the individual and collaborative role of these markers in PTC in the same patient cohort. HLA-G and BRAF tumor expression was evaluated by immunohistochemistry. Using molecular methods, BRAFV600E and TERT promoter mutations were evaluated in thyroid fine needle aspirates. MicroRNA tumor profiling was investigated using massively parallel sequencing. We observed strong HLA-G (67.96%) while BRAF (62.43%) staining was observed in PTC specimens. BRAF overexpression was associated with poor response to therapy. The BRAFV600E (52.9%) and TERTC228T (13%) mutations were associated with extrathyroidal extension, advanced-age, and advanced-stage cancer. The TERT rs2853669 CC+TC genotypes (38%) were overrepresented in metastatic tumors. Nine modulated microRNAs targeting the BRAF, TERT, and/or HLA-G genes were observed in PTC and involved with cancer-related signaling pathways. The markers were individually associated with PTC features, emphasizing the synergistic effect of BRAFV600E and TERTC228T; however, their collaborative role on PTC outcome was not fully demonstrated. The differentially expressed miRNAs targeting the BRAF and/or HLA-G genes may explain their increased expression in the tumor milieu.
Collapse
Affiliation(s)
- Bruna C. Bertol
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Juliana D. Massaro
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.D.M.); (M.C.e.S.); (C.V.A.C.)
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto, Mississauga, ON L5L 1C6, Canada;
| | - André L. P. Santos
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (A.L.P.S.); (R.T.C.)
| | - Jéssica N. G. de Araújo
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (J.N.G.d.A.); (V.N.S.)
| | - Tatiana M. V. Giorgenon
- Division of Endocrinology and Metabolism, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (T.M.V.G.); (N.L.d.F.-F.); (L.M.Z.M.)
| | - Matheus Costa e Silva
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.D.M.); (M.C.e.S.); (C.V.A.C.)
| | - Nathalie L. de Figueiredo-Feitosa
- Division of Endocrinology and Metabolism, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (T.M.V.G.); (N.L.d.F.-F.); (L.M.Z.M.)
| | - Cristhianna V. A. Collares
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.D.M.); (M.C.e.S.); (C.V.A.C.)
| | - Luiz Carlos C. de Freitas
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Edson G. Soares
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.G.S.); (L.N.)
| | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.G.S.); (L.N.)
| | - Vivian N. Silbiger
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (J.N.G.d.A.); (V.N.S.)
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (A.L.P.S.); (R.T.C.)
| | - Léa M. Z. Maciel
- Division of Endocrinology and Metabolism, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (T.M.V.G.); (N.L.d.F.-F.); (L.M.Z.M.)
| | - Eduardo A. Donadi
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.D.M.); (M.C.e.S.); (C.V.A.C.)
| |
Collapse
|
8
|
Miranda de Souza Duarte-Filho LA, Ortega de Oliveira PC, Yanaguibashi Leal CE, de Moraes MC, Picot L. Ligand fishing as a tool to screen natural products with anticancer potential. J Sep Sci 2023:e2200964. [PMID: 36808885 DOI: 10.1002/jssc.202200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Cancer is the second leading cause of death in the world and its incidence is expected to increase with the aging of the world's population and globalization of risk factors. Natural products and their derivatives have provided a significant number of approved anticancer drugs and the development of robust and selective screening assays for the identification of lead anticancer natural products are essential in the challenge of developing personalized targeted therapies tailored to the genetic and molecular characteristics of tumors. To this end, a ligand fishing assay is a remarkable tool to rapidly and rigorously screen complex matrices, such as plant extracts, for the isolation and identification of specific ligands that bind to relevant pharmacological targets. In this paper, we review the application of ligand fishing with cancer-related targets to screen natural product extracts for the isolation and identification of selective ligands. We provide critical analysis of the system configurations, targets, and key phytochemical classes related to the field of anticancer research. Based on the data collected, ligand fishing emerges as a robust and powerful screening system for the rapid discovery of new anticancer drugs from natural resources. It is currently an underexplored strategy according to its considerable potential.
Collapse
Affiliation(s)
| | | | - Cíntia Emi Yanaguibashi Leal
- Departamento de Ciências Farmacêuticas, Pós-Graduação em Biociências (PGB) Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Laboratório BIOCROM, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| |
Collapse
|
9
|
Kim JH, Cho YR, Ahn EK, Kim S, Han S, Kim SJ, Bae GU, Oh JS, Seo DW. A novel telomerase-derived peptide GV1001-mediated inhibition of angiogenesis: Regulation of VEGF/VEGFR-2 signaling pathways. Transl Oncol 2022; 26:101546. [PMID: 36183673 PMCID: PMC9526227 DOI: 10.1016/j.tranon.2022.101546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
GV1001, a human telomerase reverse transcriptase catalytic subunit-derived 16-mer peptide, has been developed as a novel anticancer vaccine against various cancers including pancreatic cancer. In the current study, we demonstrate the regulatory roles and mechanisms of GV1001 in endothelial cell responses in vitro and microvessel sprouting ex vivo. GV1001 markedly inhibits vascular endothelial growth factor-A (VEGF-A)-stimulated endothelial cell permeability, proliferation, migration, invasion, tube formation as well as microvessel outgrowth from rat aortic rings. These anti-angiogenic effects of GV1001 were associated with the inhibition of VEGF-A/VEGFR-2 signaling pathways, redistribution of vascular endothelial-cadherin to cell-cell contacts, and down-regulation of VEGFR-2 and matrix metalloproteinase-2. Furthermore, GV1001 suppresses the proliferation and invasion of non-small cell lung cancer cells, and the release of VEGF from the cells, suggesting the regulatory role of GV1001 in tumor-derived angiogenesis as well as cancer cell growth and progression. Collectively, our study reports the pharmacological potential of GV1001 in the regulation of angiogenesis, and warrants further evaluation and development of GV1001 as a promising therapeutic agent for a variety of angiogenesis-related diseases including cancer.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Rak Cho
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Eun-Kyung Ahn
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Sunho Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Surim Han
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Joon Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Gyu-Un Bae
- Department of Pharmacy, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Joa Sub Oh
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Dong-Wan Seo
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
10
|
Yalınbaş Kaya B, Ülger Y. Evaluation of possible role of the h TERT gene rs2853669 polymorphism in the development of colorectal cancer as a genetic risk factor. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:961-971. [PMID: 35704667 DOI: 10.1080/15257770.2022.2086694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is the second deadliest malignancy. Human telomerase reverse transcriptase (hTERT) gene has been identified as one of the potential cancer susceptibility genes. We evaluated the relationship between the risk of CRC and CRC's clinicopathological features of the hTERT rs2853669 (A > G/T > C, by the chain direction) polymorphism in Turkish population. The rs2853669 polymorphism was investigated with the LightCycler 96 device in 100 CRC patients and 327 controls. We found that the rs2853669 polymorphism AG/GG genotypes in genetic models reduced the risk of CRC. However, there was no significant relationship between rs2853669 polymorphism and clinicopathological features of CRC in studied population. The results of this study showed that the risk of colorectal cancer is significantly reduced in the individuals having the G (C) allele. Our recommendation is to analyze the hTERT gene expression by studying the hTERT promoter mutations with this polymorphism in colorectal cancer.
Collapse
Affiliation(s)
| | - Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| |
Collapse
|
11
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
12
|
Mao J, Zhang Q, Wang Y, Zhuang Y, Xu L, Ma X, Guan D, Zhou J, Liu J, Wu X, Liang Q, Wang M, Cong Y. TERT activates endogenous retroviruses to promote an immunosuppressive tumour microenvironment. EMBO Rep 2022; 23:e52984. [PMID: 35107856 PMCID: PMC8982579 DOI: 10.15252/embr.202152984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase plays a pivotal role in tumorigenesis by both telomere-dependent and telomere-independent activities, although the underlying mechanisms are not completely understood. Using single-sample gene set enrichment analysis (ssGSEA) across 9,264 tumour samples, we observe that expression of telomerase reverse transcriptase (TERT) is closely associated with immunosuppressive signatures. We demonstrate that TERT can activate a subclass of endogenous retroviruses (ERVs) independent of its telomerase activity to form double-stranded RNAs (dsRNAs), which are sensed by the RIG-1/MDA5-MAVS signalling pathway and trigger interferon signalling in cancer cells. Furthermore, we show that TERT-induced ERV/interferon signalling stimulates the expression of chemokines, including CXCL10, which induces the infiltration of suppressive T-cell populations with increased percentage of CD4+ and FOXP3+ cells. These data reveal an unanticipated role for telomerase as a transcriptional activator of ERVs and provide strong evidence that TERT-mediated ERV/interferon signalling contributes to immune suppression in tumours.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yaxiang Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaohe Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yu‐Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| |
Collapse
|
13
|
Sharma KL, Singh RB, Fidda N, Lloyd RV. Cribriform-morular variant of papillary thyroid carcinoma with poorly differentiated features: report of a case and review of the literature. SURGICAL AND EXPERIMENTAL PATHOLOGY 2022. [DOI: 10.1186/s42047-021-00103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Cribrifrom-morular variant of papillary thyroid carcinoma (CMVPTC) is an uncommon thyroid neoplasm that occurs predominantly in women and is sometime associated with familial adenomatous polyposis (FAP). Some of these tumors may undergo dedifferentiation to poorly differentiated thyroid carcinoma (PDTC). We describe a rare case of this carcinoma in a women without a history of FAP.
Case presentation
A 49-year-old woman with a history of breast carcinoma presented with a thyroid mass. A CMVPTC was diagnosed after excision. There was no history of FAP. Histological examination showed classical features of CMVPTC in most areas, but about 20% of the carcinoma showed features of a poorly differentiated carcinoma with a solid pattern of growth, increase mitotic activity and a high Ki-67 proliferative index (25%). Immunohistochemical stains were positive for nuclear and cytoplasmic beta catenin staining. These special studies supported the diagnosis.
Conclusion
CMVPTC with dedifferentiation to PDTC is a rare carcinoma with only 4 previous documented cases in the literature. This aggressive variant of thyroid carcinoma is more common in females, as is CMVPTC, and is often associated with an aggressive biological course. The cases usually express nuclear beta catenin and estrogen, progesterone and androgen receptors have been reported in some cases. Some cases may have somatic alterations of the APC gene and TERT promoter mutations. These carcinomas may metastasize to lung, bones and lymph nodes. Because of its aggressive behavior, patient with this diagnosis should be treated aggressively to control disease spread and mortality from the carcinoma.
Collapse
|
14
|
Lee SS, Verstovsek S, Pemmaraju N. Novel Therapies in Myeloproliferative Neoplasms: Beyond JAK Inhibitor Monotherapy. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:117-128. [PMID: 35663101 PMCID: PMC9138435 DOI: 10.36401/jipo-20-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 06/15/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic disorders that consist classically of polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). Janus kinase (JAK) inhibitors have become the standard of therapy in treating patients with intermediate- to higher-risk MF. However, JAK inhibitor (JAKi) treatment can be associated with development of resistance, suboptimal response, relapse, or treatment-related adverse effects. With no approved therapies beyond the JAKi class, the estimated median survival, post JAKi failure, is approximately two years or less; therefore, novel therapies are urgently needed in the MF field. In this review, we discuss ruxolitinib use in MPNs as well as causes of ruxolitinib failure or discontinuation. In addition, we review novel therapies being investigated alone or in combination with JAKi administration. We summarize concepts and mechanisms behind emerging novel therapies being studied for MPNs. This review of emerging novel therapies outlines several novel mechanisms of agents, including via promotion of apoptosis, alteration of the microenvironment, activation or inactivation of various pathways, targeting fibrosis, and telomerase inhibition.
Collapse
Affiliation(s)
- Sophia S. Lee
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
16
|
Petrov N, Lee HS, Liskovykh M, Teulade-Fichou MP, Masumoto H, Earnshaw WC, Pommier Y, Larionov V, Kouprina N. Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget 2021; 12:1444-1456. [PMID: 34316326 PMCID: PMC8310675 DOI: 10.18632/oncotarget.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.
Collapse
Affiliation(s)
- Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR 9187-INSERM U1196 Institute Curie, Research Center, Campus University Paris-Saclay, Orsay, France
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol 2021; 10:603738. [PMID: 33489908 PMCID: PMC7820896 DOI: 10.3389/fonc.2020.603738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, radial glial precursor cells give rise to neural lineages, and a small proportion persist in the adult mammalian brain to contribute to long-term neuroplasticity. Neural stem cells (NSCs) reside in two neurogenic niches of the adult brain, the hippocampus and the subventricular zone (SVZ). NSCs in the SVZ are endowed with the defining stem cell properties of self-renewal and multipotent differentiation, which are maintained by intrinsic cellular programs, and extrinsic cellular and niche-specific interactions. In glioblastoma, the most aggressive primary malignant brain cancer, a subpopulation of cells termed glioblastoma stem cells (GSCs) exhibit similar stem-like properties. While there is an extensive overlap between NSCs and GSCs in function, distinct genetic profiles, transcriptional programs, and external environmental cues influence their divergent behavior. This review highlights the similarities and differences between GSCs and SVZ NSCs in terms of their gene expression, regulatory molecular pathways, niche organization, metabolic programs, and current therapies designed to exploit these differences.
Collapse
Affiliation(s)
- David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sabra Khalid Salim
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 2020; 181:12-24. [PMID: 33232793 DOI: 10.1016/j.biochi.2020.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Telomerase activity is critical for cancer cells to provide unrestricted proliferation and cellular immortality through maintaining telomeres. Telomerase enzymatic activity is regulatable at the level of DNA, mRNA, post translational modifications, cellular transport and enzyme assembly. More recent studies confirm the interaction of the telomerase with various intracellular signaling pathways including PI3K/AKT/mTOR, NF-κB and Wnt/β-catenin which mainly participating in inflammation, epithelial to mesenchymal transition (EMT) and tumor cell invasion and metastasis. Furthermore, hTERT protein has been detected in non-nuclear sites such as the mitochondria and cytoplasm in cells. Mitochondrial TERT indicates various non-telomere-related functions such as decreasing reactive oxygen species (ROS) generation, boosting the respiration rate, protecting mtDNA by direct binding, interacting with mitochondrial tRNAs and increasing mitochondrial membrane potential which can lead to higher chemoresistance rate in cancer cells during therapies. Understanding the molecular mechanisms of the TERT function and depended interactions in tumor cells can suggest novel therapeutic approaches. Hence, in this review we will explain the telomerase activity regulation in translational and post translational levels besides the established correlations with various cell signaling pathways with possible pathways for therapeutic targeting.
Collapse
|
19
|
Grandin N, Gallego ME, White CI, Charbonneau M. Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. DNA Repair (Amst) 2020; 96:102996. [PMID: 33126043 DOI: 10.1016/j.dnarep.2020.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, telomerase is constitutively active and is essential for chromosome end protection and illimited proliferation of cell populations. However, upon inactivation of telomerase, alternative mechanims of telomere maintenance allow proliferation of only extremely rare survivors. S. cerevisiae type I and type II survivors differ by the nature of the donor sequences used for repair by homologous recombination of the uncapped terminal TG1-3 telomeric sequences. Type I amplifies the subtelomeric Y' sequences and is more efficient than type II, which amplifies the terminal TG1-3 repeats. However, type II survivors grow faster than type I survivors and can easily outgrow them in liquid cultures. The mechanistic interest of studying S. cerevisiae telomeric recombination is reinforced by the fact that type II recombination is the equivalent of the alternative lengthening of telomeres (ALT) pathway that is used by 5-15 % of cancer types as an alternative to telomerase reactivation. In budding yeast, only around half of the 32 telomeres harbor Y' subtelomeric elements. We report here that in strains harboring Y' elements on all telomeres, type II survivors are not observed, most likely due to an increase in the efficiency of type I recombination. However, in a temperature-sensitive cdc13-1 mutant grown at semi-permissive temperature, the increased amount of telomeric TG1-3 repeats could overcome type II inhibition by the subtelomeric Y' sequences. Strikingly, in the 100 % Y' strain the replicative senescence crisis normally provoked by inactivation of telomerase completely disappeared and the severity of the crisis was proportional to the percentage of chromosome-ends lacking Y' subtelomeric sequences. The present study highlights the fact that the nature of subtelomeric elements can influence the selection of the pathway of telomere maintenance by recombination, as well as the response of the cell to telomeric damage caused by telomerase inactivation.
Collapse
Affiliation(s)
- Nathalie Grandin
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Maria Eugenia Gallego
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Charles I White
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France.
| |
Collapse
|
20
|
Zhu T, Zhu Y, Xuan Y, Gao H, Cai X, Piersma SR, Pham TV, Schelfhorst T, Haas RRGD, Bijnsdorp IV, Sun R, Yue L, Ruan G, Zhang Q, Hu M, Zhou Y, Van Houdt WJ, Le Large TYS, Cloos J, Wojtuszkiewicz A, Koppers-Lalic D, Böttger F, Scheepbouwer C, Brakenhoff RH, van Leenders GJLH, Ijzermans JNM, Martens JWM, Steenbergen RDM, Grieken NC, Selvarajan S, Mantoo S, Lee SS, Yeow SJY, Alkaff SMF, Xiang N, Sun Y, Yi X, Dai S, Liu W, Lu T, Wu Z, Liang X, Wang M, Shao Y, Zheng X, Xu K, Yang Q, Meng Y, Lu C, Zhu J, Zheng J, Wang B, Lou S, Dai Y, Xu C, Yu C, Ying H, Lim TK, Wu J, Gao X, Luan Z, Teng X, Wu P, Huang S, Tao Z, Iyer NG, Zhou S, Shao W, Lam H, Ma D, Ji J, Kon OL, Zheng S, Aebersold R, Jimenez CR, Guo T. DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:104-119. [PMID: 32795611 PMCID: PMC7646093 DOI: 10.1016/j.gpb.2019.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
Abstract
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.
Collapse
Affiliation(s)
- Tiansheng Zhu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Yi Zhu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| | - Yue Xuan
- Thermo Fisher Scientific (BREMEN) GmbH, Bremen 28195, Germany
| | - Huanhuan Gao
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xue Cai
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands
| | - Tim Schelfhorst
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands
| | - Richard R G D Haas
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands
| | - Irene V Bijnsdorp
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Urology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Rui Sun
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Liang Yue
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Guan Ruan
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qiushi Zhang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mo Hu
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Yue Zhou
- Thermo Fisher Scientific, Shanghai 201206, China
| | - Winan J Van Houdt
- The Netherlands Cancer Institute, Surgical Oncology, Amsterdam 1011, The Netherlands
| | - Tessa Y S Le Large
- Amsterdam UMC, Vrije Universiteit Amsterdam, Surgery, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Jacqueline Cloos
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Anna Wojtuszkiewicz
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Danijela Koppers-Lalic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Hematology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Franziska Böttger
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Chantal Scheepbouwer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | | | - Jan N M Ijzermans
- Erasmus MC University Medical Center, Surgery, Rotterdam 1016LV, The Netherlands
| | - John W M Martens
- Erasmus MC University Medical Center, Medical Oncology, Rotterdam 1016LV, The Netherlands
| | - Renske D M Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | - Nicole C Grieken
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam 1011, The Netherlands
| | | | - Sangeeta Mantoo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Sze S Lee
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169608, Singapore
| | - Serene J Y Yeow
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169608, Singapore
| | - Syed M F Alkaff
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Nan Xiang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yaoting Sun
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xiao Yi
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shaozheng Dai
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Liu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Tian Lu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhicheng Wu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Xiao Liang
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Man Wang
- MOE Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing 100142, China
| | - Yingkuan Shao
- Cancer Institute (MOE Key Laboratory of Cancer Prevention and Intervention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xi Zheng
- Cancer Institute (MOE Key Laboratory of Cancer Prevention and Intervention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kailun Xu
- Cancer Institute (MOE Key Laboratory of Cancer Prevention and Intervention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qin Yang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yifan Meng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Lu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiang Zhu
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin'e Zheng
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sai Lou
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Yibei Dai
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chao Xu
- College of Mathematics and Informatics, Digital Fujian Institute of Big Data Security Technology, Fujian Normal University, Fuzhou 350108, China
| | - Chenhuan Yu
- Zhejiang Provincial Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310015, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310015, China
| | - Tony K Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jianmin Wu
- MOE Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing 100142, China
| | - Xiaofei Gao
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhongzhi Luan
- School of Computer Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Peng Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi'ang Huang
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Narayanan G Iyer
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169608, Singapore
| | - Shuigeng Zhou
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
| | - Wenguang Shao
- Department of Biology, Institute for Molecular Systems Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiafu Ji
- MOE Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Translational Research, Peking University Cancer Hospital, Beijing 100142, China
| | - Oi L Kon
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore 169608, Singapore
| | - Shu Zheng
- Cancer Institute (MOE Key Laboratory of Cancer Prevention and Intervention, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruedi Aebersold
- Department of Biology, Institute for Molecular Systems Biology, ETH Zurich, Zurich 8092, Switzerland; Faculty of Science, University of Zurich, Zurich 8092, Switzerland
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, VU University Medical Center, VU University, Amsterdam 1011, The Netherlands
| | - Tiannan Guo
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
21
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
22
|
Zeng X, Hernandez-Sanchez W, Xu M, Whited TL, Baus D, Zhang J, Berdis AJ, Taylor DJ. Administration of a Nucleoside Analog Promotes Cancer Cell Death in a Telomerase-Dependent Manner. Cell Rep 2019; 23:3031-3041. [PMID: 29874588 DOI: 10.1016/j.celrep.2018.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Telomerase, the end-replication enzyme, is reactivated in malignant cancers to drive cellular immortality. While this distinction makes telomerase an attractive target for anti-cancer therapies, most approaches for inhibiting its activity have been clinically ineffective. As opposed to inhibiting telomerase, we use its activity to selectively promote cytotoxicity in cancer cells. We show that several nucleotide analogs, including 5-fluoro-2'-deoxyuridine (5-FdU) triphosphate, are effectively incorporated by telomerase into a telomere DNA product. Administration of 5-FdU results in an increased number of telomere-induced foci, impedes binding of telomere proteins, activates the ATR-related DNA-damage response, and promotes cell death in a telomerase-dependent manner. Collectively, our data indicate that telomerase activity can be exploited as a putative anti-cancer strategy.
Collapse
Affiliation(s)
- Xuehuo Zeng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Mengyuan Xu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tawna L Whited
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Diane Baus
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony J Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Eran Z, Zingariello M, Bochicchio MT, Bardelli C, Migliaccio AR. Novel strategies for the treatment of myelofibrosis driven by recent advances in understanding the role of the microenvironment in its etiology. F1000Res 2019; 8:F1000 Faculty Rev-1662. [PMID: 31583083 PMCID: PMC6758840 DOI: 10.12688/f1000research.18581.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Myelofibrosis is the advanced stage of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by systemic inflammation, hematopoietic failure in the bone marrow, and development of extramedullary hematopoiesis, mainly in the spleen. The only potentially curative therapy for this disease is hematopoietic stem cell transplantation, an option that may be offered only to those patients with a compatible donor and with an age and functional status that may face its toxicity. By contrast, with the Philadelphia-positive MPNs that can be dramatically modified by inhibitors of the novel BCR-ABL fusion-protein generated by its genetic lesion, the identification of the molecular lesions that lead to the development of myelofibrosis has not yet translated into a treatment that can modify the natural history of the disease. Therefore, the cure of myelofibrosis remains an unmet clinical need. However, the excitement raised by the discovery of the genetic lesions has inspired additional studies aimed at elucidating the mechanisms driving these neoplasms towards their final stage. These studies have generated the feeling that the cure of myelofibrosis will require targeting both the malignant stem cell clone and its supportive microenvironment. We will summarize here some of the biochemical alterations recently identified in MPNs and the novel therapeutic approaches currently under investigation inspired by these discoveries.
Collapse
Affiliation(s)
- Zimran Eran
- Department of Hematology, Hadassah University Center, Jerusalem, Israel
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Teresa Bochicchio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), IRCCS, Meldola (FC), Italy
| | - Claudio Bardelli
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv 2019; 2:2378-2388. [PMID: 30242099 DOI: 10.1182/bloodadvances.2018022012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/18/2018] [Indexed: 01/26/2023] Open
Abstract
Clinical trials of imetelstat therapy have indicated that this telomerase inhibitor might have disease-modifying effects in a subset of patients with myelofibrosis (MF). The mechanism by which imetelstat induces such clinical responses has not been clearly elucidated. Using in vitro hematopoietic progenitor cell (HPC) assays and in vivo hematopoietic stem cell (HSC) assays, we examined the effects of imetelstat on primary normal and MF HSCs/HPCs. Treatment of CD34+ cells with imetelstat reduced the numbers of MF but not cord blood HPCs (colony-forming unit-granulocyte/macrophage, burst-forming unit-erythroid, and colony-forming unit-granulocyte/erythroid/macrophage/megakaryocyte) as well as MF but not normal CD34+ALDH+ cells irrespective of the patient's mutational status. Moreover, imetelstat treatment resulted in depletion of mutated HPCs from JAK2V617F+ MF patients. Furthermore, treatment of immunodeficient mice that had been previously transplanted with MF splenic CD34+ cells with imetelstat at a dose of 15 mg/kg, 3 times per week for 4 weeks had a limited effect on the degree of chimerism achieved by normal severe combined immunodeficiency repopulating cells but resulted in a significant reduction in the degree of human MF cell chimerism as well as the proportion of mutated donor cells. These effects were sustained for at least 3 months after drug treatment was discontinued. These actions of imetelstat on MF HSCs/HPCs were associated with inhibition of telomerase activity and the induction of apoptosis. Our findings indicate that the effects of imetelstat therapy observed in MF patients are likely attributable to the greater sensitivity of imetelstat against MF as compared with normal HSCs/HPCs as well as the intensity of the imetelstat dose schedule.
Collapse
|
25
|
Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications. Front Oncol 2019; 9:779. [PMID: 31482066 PMCID: PMC6710355 DOI: 10.3389/fonc.2019.00779] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human glioblastoma is the most aggressive type of primary malignant brain tumors. Standard treatment includes surgical resection followed by radiation and chemotherapy but it only provides short-term benefits and the prognosis of these brain tumors is still very poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal ability, which are partly responsible for the tumor resistance to therapy and for the tumor recurrence after treatment. The human adult subventricular zone contains astrocyte-like neural stem cells (NSCs) that are probably reminiscent of the radial glia present in embryonic brain development. There are numerous molecules involved in the biology of subventricular zone NSCs that are also instrumental in glioblastoma development. These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription factors, and growth factors. Interestingly, genes encoding these molecules are frequently mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the subventricular zone are a potential cell of origin that contains the driver mutations of human glioblastoma. In this review we will describe common features between GSCs and subventricular zone NSCs, and we will discuss the relevance of this important finding in terms of possible future therapeutic strategies.
Collapse
|
26
|
Zhang S, Sun H, Wang L, Liu Y, Chen H, Li Q, Guan A, Liu M, Tang Y. Real-time monitoring of DNA G-quadruplexes in living cells with a small-molecule fluorescent probe. Nucleic Acids Res 2019; 46:7522-7532. [PMID: 30085206 PMCID: PMC6125622 DOI: 10.1093/nar/gky665] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
G-quadruplex DNA has been viewed as a prospective anti-cancer target owing to its potential biological relevance. Real-time monitoring of DNA G-quadruplex structures in living cells can provide valuable insights into the relationship between G-quadruplex formation and its cellular consequences. However, the probes capable of detecting DNA G-quadruplexes in living cells are still very limited. Herein, we reported a new fluorescent probe, IMT, for real-time visualization of DNA G-quadruplex structures in living cells. Using IMT as a fluorescent indicator, the quantity changes of DNA G-quadruplex at different points in time during continuous cellular progression responding to Aphidicolin and Hydroxyurea treatment have been directly visualized. Our data demonstrate that IMT will be a valuable tool for exploring DNA G-quadruplexes in live cells. Further application of IMT in fluorescence imaging may reveal more information on the roles of DNA G-quadruplexes in biological systems.
Collapse
Affiliation(s)
- Suge Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lixia Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yan Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hongbo Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Aijiao Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Meirong Liu
- Center for Physiochemical Analysis & Measurement, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
27
|
Lee YH, Chen YY, Yeh YL, Wang YJ, Chen RJ. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. Int J Mol Sci 2019; 20:ijms20112716. [PMID: 31159515 PMCID: PMC6600253 DOI: 10.3390/ijms20112716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a state of cell cycle arrest characterized by a distinct morphology, gene expression pattern, and secretory phenotype. It can be triggered by multiple mechanisms, including those involved in telomere shortening, the accumulation of DNA damage, epigenetic pathways, and the senescence-associated secretory phenotype (SASP), and so on. In current cancer therapy, cellular senescence has emerged as a potent tumor suppression mechanism that restrains proliferation in cells at risk for malignant transformation. Therefore, compounds that stimulate the growth inhibition effects of senescence while limiting its detrimental effects are believed to have great clinical potential. In this review article, we first review the current knowledge of the pro- and antitumorigeneic functions of senescence and summarize the key roles of telomerase in the regulation of senescence in tumors. Second, we review the current literature regarding the anticancer effects of stilbene compounds that are mediated by the targeting of telomerase and cell senescence. Finally, we provide future perspectives on the clinical utilization of stilbene compounds, especially resveratrol and pterostilbene, as novel cancer therapeutic remedies. We conclude and propose that stilbene compounds may induce senescence and may potentially be used as the therapeutic or adjuvant agents for cancers with high telomerase activity.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| |
Collapse
|
28
|
Man J, Nicolson N, Gibson C, Carling T. TERT promoter mutations in thyroid cancer: growing evidence for a predictor of poor outcome. Gland Surg 2019; 8:301-303. [PMID: 31328111 DOI: 10.21037/gs.2019.04.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jianliang Man
- Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Norman Nicolson
- Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Courtney Gibson
- Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| | - Tobias Carling
- Yale University School of Medicine, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
29
|
Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol 2019; 8:rsob.180018. [PMID: 29695617 PMCID: PMC5936717 DOI: 10.1098/rsob.180018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress.
Collapse
Affiliation(s)
- Özgün Özer
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
30
|
Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Int J Mol Sci 2019; 20:ijms20010200. [PMID: 30625996 PMCID: PMC6337644 DOI: 10.3390/ijms20010200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a type of brain tumor that is notorious for its aggressiveness and invasiveness, and the complete removal of GBM is still not possible, even with advanced diagnostic strategies and extensive therapeutic plans. Its dismal prognosis and short survival time after diagnosis make it a crucial public health issue. Understanding the molecular mechanisms underlying GBM may inspire novel and effective treatments against this type of cancer. At a molecular level, almost all tumor cells exhibit telomerase activity (TA), which is a major means by which they achieve immortalization. Further studies show that promoter mutations are associated with increased TA and stable telomere length. Moreover, some tumors and immortalized cells maintain their telomeres with a telomerase-independent mechanism termed the “alternative lengthening of telomeres” (ALT), which relates to the mutations of the α-thalassemia/mental retardation syndrome X-linked protein (ATRX), the death-domain associated protein (DAXX) and H3.3. By means of the mutations of the telomerase reverse transcriptase (TERT) promoter and ATRX/DAXX, cancers can immortalize and escape cell senescence and apoptosis. In this article, we review the evidence for triggering GBM cell death by targeting telomerase and the ALT pathway, with an extra focus on a plant-derived compound, butylidene phthalide (BP), which may be a promising novel anticancer compound with good potential for clinical applications.
Collapse
|
31
|
Liu X, Fu Q, Li S, Liang N, Li F, Li C, Sui C, Dionigi G, Sun H. LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:207. [PMID: 31024447 PMCID: PMC6463795 DOI: 10.3389/fendo.2019.00207] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA FOXD2 Adjacent Opposite Strand RNA 1 (FOXD2-AS1) has been widely reported to be implicated in the progression and recurrence of several cancers. The clinical significance and functional role of FOXD2-AS1 in thyroid carcinoma remain unknown. FOXD2-AS1 expression was evaluated by analyzing thyroid cancer RNA sequencing dataset from The Cancer Genome Atlas (TCGA). In vitro and in vivo assays were performed to assess the biological roles of FOXD2-AS1 in thyroid cancer cells. Western blot, luciferase, immunoprecipitation (IP), and RNA immunoprecipitation (RIP) assays were used to identify the underlying miRNA and mRNA target mediating the biological roles of FOXD2-AS1 in thyroid cancer cells. FOXD2-AS1 was upregulated in thyroid carcinoma tissues and cells. High expression of FOXD2-AS1 significantly correlated with clinical stage, recurrence of thyroid carcinoma. Silencing FOXD2-AS1 inhibited cancer stem cell-like phenotypes and attenuates the anoikis resistance in vitro. Downregulating FOXD2-AS1 represses the tumorigenesis of thyroid carcinoma cells in vivo. FOXD2-AS1 acts as a competitive endogenous RNA (ceRNA) for miR-7-5p, up-regulating the expression of telomerase reverse transcriptase (TERT), which further promotes the cancer stem cells features and anoikis resistance in thyroid cancer cells. Our findings indicate that FOXD2-AS1 functions as an oncogenic regulator in the development of thyroid cancer, contributing to early recurrence of thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingfeng Fu
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shijie Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Liang
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changlin Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino”, University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hui Sun
| |
Collapse
|
32
|
Liu Y, Li Z, Tang X, Li M, Shi F. Association between hTERT Polymorphisms and Female Papillary Thyroid Carcinoma. Recent Pat Anticancer Drug Discov 2019; 14:268-279. [PMID: 31538903 DOI: 10.2174/1574892814666190919145453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A previous genome-wide association study showed that hTERT rs10069690 and rs2736100 polymorphisms were associated with thyroid cancer risk. OBJECTIVE This study further investigated the association between increased risk and clinicopathologic characteristics for Papillary Thyroid Carcinoma (PTC) and hTERT polymorphisms rs10069690 or rs2736100 in a Chinese female population. METHODS The hTERT genotypes of 276 PTC patients and 345 healthy subjects were determined with regard to SNPs rs10069690 and rs2736100. The association between these SNPs and the risk of PTC and clinicopathologic characteristics was investigated by logistic regression. RESULTS We found a significant difference between PTC and rs10069690 (Odds Ratio (OR) = 1.515; P = 0.005), but not between PTC and rs2736100. When the analysis was limited to females, rs10069690 and rs2736100 were both associated with increased risk for PTC in female individuals (OR = 1.647, P = 0.007; OR = 1.339, P = 0.041, respectively). Further haplotype analysis revealed a stimulative effect of haplotypes TC and CA of TERT rs10069690-rs2736100, which increased risk for PTC in female individuals (OR = 1.579, P = 0.014; OR = 0.726, P = 0.025, respectively). Furthermore, the heterozygote A/C of rs2736100 showed significant difference for age (OR = 0.514, P = 0.047). CONCLUSION Our finding suggests that hTERT polymorphisms rs10069690 and rs2736100 are associated with increased risk for PTC in Chinese female population and rs2736100 may be related to age. Consistent with US20170360914 and US20170232075, they are expected to be a potential molecular target for anti-cancer therapy.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Min Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| | - Feng Shi
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China
| |
Collapse
|
33
|
Lee HS, Carmena M, Liskovykh M, Peat E, Kim JH, Oshimura M, Masumoto H, Teulade-Fichou MP, Pommier Y, Earnshaw WC, Larionov V, Kouprina N. Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Res 2018; 78:6282-6296. [PMID: 30166419 PMCID: PMC6214708 DOI: 10.1158/0008-5472.can-18-0894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
The targeting of telomerase and telomere maintenance mechanisms represents a promising therapeutic approach for various types of cancer. In this work, we designed a new protocol to screen for and rank the efficacy of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular human artificial chromosome (HAC, lacking telomeres) and a linear HAC (containing telomeres) marked with the EGFP transgene; compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. Our assay allowed quantification of chromosome loss by routine flow cytometry. We applied this dual-HAC assay to rank a set of known and newly developed compounds, including G-quadruplex (G4) ligands. Among the latter group, two compounds, Cu-ttpy and Pt-ttpy, induced a high rate of linear HAC loss with no significant effect on the mitotic stability of a circular HAC. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges in late mitosis and cytokinesis as well as UFB (ultrafine bridges). Chromosome loss after Pt-ttpy or Cu-ttpy treatment correlated with the induction of telomere-associated DNA damage. Overall, this platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.Significance: An assay provides a unique opportunity to screen thousands of chemical compounds for their ability to inactivate replication of telomeric ends in cancer cells and holds potential to lay the foundation for the discovery of new treatments for cancer. Cancer Res; 78(21); 6282-96. ©2018 AACR.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Emma Peat
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mitsuo Oshimura
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori, Japan
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Marie-Paule Teulade-Fichou
- Chemistry Modelling and Imaging for Biology, CNRS UMR 9187- INSERM U1196 Institute Curie, Research Center, Campus University Paris-Sud, Orsay, France
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| |
Collapse
|
34
|
Zimran E, Keyzner A, Iancu-Rubin C, Hoffman R, Kremyanskaya M. Novel treatments to tackle myelofibrosis. Expert Rev Hematol 2018; 11:889-902. [PMID: 30324817 DOI: 10.1080/17474086.2018.1536538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite the dramatic progress made in the treatment of patients with myelofibrosis since the introduction of the JAK1/2 inhibitor ruxolitinib, a therapeutic option that can modify the natural history of the disease and prevent evolution to blast-phase is still lacking. Recent investigational treatments including immunomodulatory drugs and histone deacetylase inhibitors benefit some patients but these effects have proven modest at best. Several novel agents do show promising activity in preclinical studies and early-phase clinical trials. We will illustrate a snapshot view of where the management of myelofibrosis is evolving, in an era of personalized medicine and advanced molecular diagnostics. Areas covered: A literature search using MEDLINE and recent meeting abstracts was performed using the keywords below. It focused on therapies in active phases of development based on their scientific and preclinical rationale with the intent to highlight agents that have novel biological effects. Expert commentary: The most mature advances in treatment of myelofibrosis are the development of second-generation JAK1/2 inhibitors and improvements in expanding access to donors for transplantation. In addition, there are efforts to identify drugs that target pathways other than JAK/STAT signaling that might improve the survival of myelofibrosis patients, and limit the need for stem-cell transplantation.
Collapse
Affiliation(s)
- Eran Zimran
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Alla Keyzner
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Camelia Iancu-Rubin
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Ronald Hoffman
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| | - Marina Kremyanskaya
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , Myeloproliferative Neoplasms Research Program , New York , NY , USA
| |
Collapse
|
35
|
Chen B, Zhang Y, Yang Y, Chen S, Xu A, Wu L, Xu S. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine (Lond) 2018; 13:2067-2082. [PMID: 30203702 DOI: 10.2217/nnm-2018-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the possible mechanisms of telomerase and telomere underlying the anticancer effects of silver nanoparticles (AgNPs). MATERIALS & METHODS 25nm polyvinylpyrrolidone-coated AgNPs were used. The telomerase activity and telomere function were evaluated. The anticancer effects of AgNPs were gauged with cell viability assay under different statement of telomerase and telomere. RESULTS & CONCLUSION AgNPs could inhibit telomerase activity and lead to telomere shortening and dysfunction. Overexpression of telomerase attenuated the anticancer activity of AgNPs, whereas downregulation of telomerase activity or dysfunction of the telomere enhanced the cytotoxicity of AgNPs in HeLa cells. Our findings provided strong evidence that the anticancer effects of AgNPs were mediated via interference with the telomerase/telomere.
Collapse
Affiliation(s)
- Biao Chen
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yajun Zhang
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yaning Yang
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lijun Wu
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Key Laboratory of Environmental Toxicology & Pollution Control Technology of Anhui Province, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Key Laboratory of Environmental Toxicology & Pollution Control Technology of Anhui Province, Hefei, Anhui, 230031, PR China
| |
Collapse
|
36
|
Jin A, Xu J, Wang Y. The role of TERT promoter mutations in postoperative and preoperative diagnosis and prognosis in thyroid cancer. Medicine (Baltimore) 2018; 97:e11548. [PMID: 30024548 PMCID: PMC6086515 DOI: 10.1097/md.0000000000011548] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) promoter mutations have been described in different pathological types of thyroid cancers (TC). After many types of research focusing on the mutations rate in malignant tumors, the main role of TERT promoter mutations has been changed to the preoperative diagnosis and prognosis of TC, according to their high prevalence in aggressive TC. METHODS We searched Pubmed, Web of Science, Scopus, and VHL and reviewed the most common 2 mutations C288T and C250T in different types of TC, the association between them and some specific clinicopathological features, and their significance in preoperative diagnosis and prognosis of TC. we chose 38 studies into our qualitative research. We also chose 22 studies to do a meta-analysis on this subject. RESULTS The overall rate of these mutations in different types of TC was 10.0%, with 86.1% C228T mutation, 12% C250T mutation, and 2.1% other type mutations. The rate increases significantly as the TC become more aggressive, and reaches 56.8% in anaplastic thyroid cancer (ATC). Statistically meaningful association is found between TERT promoter mutations and older age, larger tumor size, extrathyroidal extension, lymph node metastasis, distance metastasis, advanced TNM stage, recurrence, and BRAF V600E mutation. Some studies concentrating on DNA sequencing based on fine needle aspiration biopsy (FNAB) also proved their significance in preoperative stage, with 7% to 16.5% sensitivity. CONCLUSIONS TERT promoter mutations were likely to occur in BRAF V600E positive TC. Patients with these 2 combined mutations were more likely to have a poor prognosis and outcome. TERT promoter mutations is an essential part of the ThySeq gene panel. The mechanism of how they influence the appearance and development of TC has not been expounded. The next study direction may be the mechanism exploration and the further study to prove their significance in preoperative diagnosis.
Collapse
Affiliation(s)
- Anqi Jin
- Master of Medicine in Reading, Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai
- Medical College of Soochow University, Suzhou
| | - Jianhao Xu
- Medical College of Soochow University, Suzhou
| | - Yan Wang
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| |
Collapse
|
37
|
Park JK, Kim Y, Kim H, Jeon J, Kim TW, Park JH, Hwnag YI, Lee WJ, Kang JS. The anti-fibrotic effect of GV1001 combined with gemcitabine on treatment of pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:75081-75093. [PMID: 27655706 PMCID: PMC5342724 DOI: 10.18632/oncotarget.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
GV1001 is a telomerase-based cancer vaccine made of a 16-mer telomerase reverse transcriptase (TERT) peptide, and human TERT, the rate-limiting subunit of the telomerase complex, is an attractive target for cancer vaccination. The aim of this study was to evaluate the effect of telomerase peptide vaccination, GV1001 combined with gemcitabine in treatment of pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines were used in vitro experiment and also, PDAC xenograft mice model was established using PANC1, AsPC1 and CD133+ AsPC1 (PDAC stem cell). Treatment groups were divided as follows; control, gemcitabine, GV1001, gemcitabine and GV1001 combination. The inflammatory cytokines were measured from the blood, and xenograft tumor specimens were evaluated. GV1001 treatment alone did not affect the proliferation or the apoptosis of PDAC cells. Gemcitabine alone and gemcitabine with GV1001 groups had significantly reduced in tumor size and showed abundant apoptosis compared to other treatment groups. Surprisingly, xenograft PDAC tumor specimens of gemcitabine alone group had been replaced by severe fibrosis whereas gemcitabine with GV1001 group had significantly less fibrosis. Blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β increased in gemcitabine alone group, however, it was decreased in gemcitabine with GV1001 group. GV1001 combined with gemcitabine treatment showed significant loss of fibrosis in tumor tissue as well as tumor cell death. Therefore, further investigation of GV1001 effect combined with gemcitabine treatment may give us useful insights to overcome the hurdle in anti-cancer drug delivery over massive fibrosis around PDACs.
Collapse
Affiliation(s)
- Joo Kyung Park
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyemin Kim
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Wan Kim
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji-Hong Park
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Young-Il Hwnag
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Anti-Oxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
38
|
Guang J, Rumlow ZA, Wiles LM, O'Neill S, Walczak MA. Sulfated liposaccharides inspired by telomerase inhibitor axinelloside A. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Low frequency of TERT promoter mutations in a series of well-differentiated follicular-patterned thyroid neoplasms. Virchows Arch 2017; 471:769-773. [PMID: 28975450 DOI: 10.1007/s00428-017-2236-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
Abstract
The diagnostic and clinical approaches to follicular-patterned thyroid neoplasms often create dilemmas for pathologist and clinicians. The molecular analysis of these tumors could be a useful tool to overcome diagnostic limitations. The most frequent molecular alterations are point mutations of RAS family genes. Nevertheless, other molecular markers should be taken into account for their prognostic role, as BRAF mutations and the recently described telomerase reverse transcriptase (TERT) promoter mutation. We investigated the prevalence and the possible role of TERT promoter, BRAF, and RAS mutations in a series of low-risk well-differentiated follicular-patterned thyroid neoplasms. We evaluated 60 follicular adenomas (FA), 29 minimally invasive follicular carcinomas (MIFTC), 82 papillary carcinomas, follicular variant (FVPTC), and 16 noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFT-P) for the molecular status of BRAF, H-, N-, K-RAS, and TERT and correlated it with clinic-pathological parameters of tumors. Fifty-seven (30.5%) follicular neoplasms were mutated. In particular, we found 44 RAS mutated neoplasms (23.5%), specifically three FAs, 29 FVPTCs, five NIFT-Ps, and seven FTCs. BRAF mutations were found in ten FVPTCs. Finally, TERT promoter mutations were observed in three FVPTCs and three FTCs; three of them harbored also N-RAS mutations. We confirmed the absence of TERT promoter mutations in benign follicular neoplasms and found a low frequency of TERT promoter mutations in our selected cohort of low-risk follicular-patterned malignancies, speculating their role in the progression and de-differentiation of thyroid cancer.
Collapse
|
40
|
Huang C, Li R, Zhang Y, Gong J. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice. Technol Cancer Res Treat 2017; 16:546-558. [PMID: 27402632 PMCID: PMC5665146 DOI: 10.1177/1533034616657976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/27/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. MATERIALS AND METHODS The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. RESULTS The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. CONCLUSION The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells.
Collapse
Affiliation(s)
- Chun Huang
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
| | - Runqin Li
- Division of Basic Medical Science, Chongqing Three Gorges Medical College, Chongqing, Wanzhou, People’s Republic of China
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yinglin Zhang
- Department of Hepatobiliary Surgery, The Third Hospital of Mianyang, Mianyang, Sichuan, People’s Republic of China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
41
|
Papi F, Bazzicalupi C, Ferraroni M, Massai L, Bertrand B, Gratteri P, Colangelo D, Messori L. [Au(9-methylcaffein-8-ylidene)2
]+
/DNA Tel23 System: Solution, Computational, and Biological Studies. Chemistry 2017; 23:13784-13791. [DOI: 10.1002/chem.201702854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Francesco Papi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco, Salute del Bambino (NEUROFARBA); Laboratory of Molecular Modeling Cheminformatics & QSAR; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino (FI Italy
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | - Marta Ferraroni
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | - Lara Massai
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | | | - Paola Gratteri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco, Salute del Bambino (NEUROFARBA); Laboratory of Molecular Modeling Cheminformatics & QSAR; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino (FI Italy
| | - Donato Colangelo
- Dipartimento di Scienze della Salute; Università del Piemonte Orientale ‘A. Avogadro'; Via Solaroli 17 28100 Novara Italy
| | - Luigi Messori
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| |
Collapse
|
42
|
Peng R. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:305-312. [PMID: 28059472 DOI: 10.1002/bmb.21038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
To promote graduate students' active learning, deep reading of high quality papers was done by graduate students enrolled in biochemistry and microbiology pharmacy curriculum offered by college of life science, Jiangxi Normal University from 2013 to 2015. The number of graduate students, who participated in the course in 2013, 2014, and 2015 were eleven, thirteen and fifteen, respectively. Through deep reading of papers, presentation, and group discussion in the lecture, these graduate students have improved their academic performances effectively, such as literature search, PPT document production, presentation management, specialty document reading, academic inquiry, and analytical and comprehensive ability. The graduate students also have increased their understanding level of frontier research, scientific research methods, and experimental methods. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):305-312, 2017.
Collapse
Affiliation(s)
- Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
43
|
Javan Maasomi Z, Pilehvar Soltanahmadi Y, Dadashpour M, Alipour S, Abolhasani S, Zarghami N. Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells. Asian Pac J Cancer Prev 2017; 18:1283-1287. [PMID: 28610415 PMCID: PMC5555536 DOI: 10.22034/apjcp.2017.18.5.1283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Breast cancer is one of the most significant causes of female cancer death worldwide. Although several chemotherapeutics have been developed to treat this type of cancer, issues remain such as low survival rates and high reoccurrence after chemotherapy and radiotherapy. To explore a chemopreventive approach to enhancing breast cancer treatment efficacy, the antiproliferative effects of a combination of chrysin and silibinin, two herbal substances, in T47D breast cancer cells were assessed. Materials and Methods: Cytotoxicity of the agents singly and in combination was evaluated by MTT assay. Also, qRT-PCR was used to measure the expression levels of hTERT and cyclin D1 genes after 48 h treatment. Results: Cell viability assays revealed that chrysin or silibinin alone inhibited proliferation in a dose and time-dependent manner, and combining the drugs synergistically induced growth inhibition in the breast cancer cell line. The precise nature of this interaction was further analyzed by the median-effect method, where the combination indices (CI) were <1 for combination treatments, indicating synergism regarding T47D cell proliferation. qPCR results showed that the drug combination also synergistically down-regulated the mRNA levels of hTERT and cyclin D1 at all used concentrations compared with the drugs used alone after 48 h treatment (P ≤ 0.05). Conclusion: The data provide evidence that synergistic antiproliferative effects of Chrysin and Silibinin are linked to the down-regulation of cyclin D1 and hTERT genes, and suggest that their combination may have therapeutic value in treatment of breast cancer.
Collapse
Affiliation(s)
- Zahra Javan Maasomi
- Department of Genetics, Faculty of Sciences, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
44
|
Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia 2017; 31:2458-2467. [PMID: 28270692 DOI: 10.1038/leu.2017.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Imetelstat (GRN163L) is a specific telomerase inhibitor that has demonstrated clinical activity in patients with myeloproliferative neoplasms (MPN) and in patients with solid tumors. The antitumor effects were associated with the development of thrombocytopenia, one of the common side effects observed in patients treated with imetelstat. The events underlying these adverse effects are not apparent. In this report, we investigated the potential mechanisms that account for imetelstat's beneficial effects in MPN patients and the manner by which imetelstat treatment leads to a reduction in platelet numbers. Using a well-established system of ex vivo megakaryopoiesis, we demonstrated that imetelestat treatment affects normal megakaryocyte (MK) development by exclusively delaying maturation of MK precursor cells. By contrast, additional stages along MPN MK development were affected by imetelstat resulting in reduced numbers of assayable colony-forming unit MK and impaired MK maturation. In addition, treatment with imetelstat inhibited the secretion of fibrogenic growth factors by malignant but not by normal MK. Our results indicate that the delay observed in normal MK maturation may account for imetelstat-induced thrombocytopenia, while the more global effects of imetelstat on several stages along the hierarchy of MPN megakaryopoiesis may be responsible for the favorable clinical outcomes reported in MPN patients.
Collapse
|
45
|
Oh EJ, Lee S, Bae JS, Kim Y, Jeon S, Jung CK. TERT Promoter Mutation in an Aggressive Cribriform Morular Variant of Papillary Thyroid Carcinoma. Endocr Pathol 2017; 28:49-53. [PMID: 27688081 DOI: 10.1007/s12022-016-9454-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC) is a rare thyroid neoplasm characterized by unique morphologic findings and association with familial adenomatous polyposis. The biologic behavior of this variant has been reported to behave similarly to classic PTC. We report a rare sporadic case of CMV-PTC occurring in a 45-year-old female with multiple lymph nodes and bone metastases, which were detected after total thyroidectomy and radioactive iodine remnant ablation. Molecular analyses of primary thyroid and metastatic tumor tissues revealed a telomerase reverse transcriptase (TERT) promoter mutation, but absence of BRAF, KRAS, NRAS, HRAS, and PIK3CA mutations. Over a 4-year follow-up period, structurally identifiable bone metastases were persistent, but serial post-operative serum thyroglobulin levels remained undetectable in the absence of thyroglobulin antibody. The literature was reviewed. This is the first case of aggressive CMV-PTC showing TERT promoter mutation. TERT promoter mutations may help in predicting aggressive clinical behavior in CMV-PTC. Postoperative serum thyroglobulin measurement may have no impact on clinical decision-making in this type of tumor.
Collapse
Affiliation(s)
- Eun Ji Oh
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sohee Lee
- Department of Surgery, Seoul St. Mary's Hosptial, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ja Seong Bae
- Department of Surgery, Seoul St. Mary's Hosptial, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yourha Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sora Jeon
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
46
|
Chang KP, Wang CI, Pickering CR, Huang Y, Tsai CN, Tsang NM, Kao HK, Cheng MH, Myers JN. Prevalence of promoter mutations in the TERT gene in oral cavity squamous cell carcinoma. Head Neck 2017; 39:1131-1137. [DOI: 10.1002/hed.24728] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/14/2016] [Accepted: 12/29/2016] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology - Head and Neck Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
- Molecular Medicine Research Center, College of Medicine; Chang Gung University; Tao-Yuan Taiwan
- College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Chun-I Wang
- Department of Otolaryngology - Head and Neck Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Curtis R. Pickering
- Department of Head and Neck Surgery; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yenlin Huang
- Department of Pathology; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences; Chang Gung University; Tao-Yuan Taiwan
| | - Ngan-Ming Tsang
- Department of Radiation Oncology; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
- College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Ming-Huei Cheng
- Department of Plastic and Reconstructive Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
- College of Medicine; Chang Gung University; Tao-Yuan Taiwan
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery; The University of Texas MD Anderson Cancer Center; Houston Texas
| |
Collapse
|
47
|
Gomez DLM, Armando RG, Cerrudo CS, Ghiringhelli PD, Gomez DE. Telomerase as a Cancer Target. Development of New Molecules. Curr Top Med Chem 2017; 16:2432-40. [PMID: 26873194 PMCID: PMC4997958 DOI: 10.2174/1568026616666160212122425] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/15/2015] [Accepted: 10/25/2015] [Indexed: 12/26/2022]
Abstract
Telomeres are the terminal part of the chromosome containing a long repetitive and non-codifying sequence that has as function protecting the chromosomes. In normal cells, telomeres lost part of such repetitive sequence in each mitosis, until telomeres reach a critical point, triggering at that time senescence and cell death. However, in most of tumor cells in each cell division a part of the telomere is lost, however the appearance of an enzyme called telomerase synthetize the segment that just has been lost, therefore conferring to tumor cells the immortality hallmark. Telomerase is significantly overexpressed in 80–95% of all malignant tumors, being present at low levels in few normal cells, mostly stem cells. Due to these characteristics, telomerase has become an attractive target for new and more effective anticancer agents. The capability of inhibiting telomerase in tumor cells should lead to telomere shortening, senescence and apoptosis. In this work, we analyze the different strategies for telomerase inhibition, either in development, preclinical or clinical stages taking into account their strong points and their caveats. We covered strategies such as nucleosides analogs, oligonucleotides, small molecule inhibitors, G-quadruplex stabilizers, immunotherapy, gene therapy, molecules that affect the telomere/telomerase associated proteins, agents from microbial sources, among others, providing a balanced evaluation of the status of the inhibitors of this powerful target together with an analysis of the challenges ahead.
Collapse
Affiliation(s)
| | | | | | | | - D E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology. Quilmes National University, Bernal, Buenos Aires, Argentina. R. Saenz Peña 352, (1876) Buenos Aires, Argentina.
| |
Collapse
|
48
|
Fuggetta MP, De Mico A, Cottarelli A, Morelli F, Zonfrillo M, Ulgheri F, Peluso P, Mannu A, Deligia F, Marchetti M, Roviello G, Reyes Romero A, Dömling A, Spanu P. Synthesis and Enantiomeric Separation of a Novel Spiroketal Derivative: A Potent Human Telomerase Inhibitor with High in Vitro Anticancer Activity. J Med Chem 2016; 59:9140-9149. [DOI: 10.1021/acs.jmedchem.6b01046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Pia Fuggetta
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle
Ricerche, Via Fosso del Cavaliere, 00133 Roma, Italy
| | - Antonella De Mico
- Istituto
di Biologia e Patologia Molecolare, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Cottarelli
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle
Ricerche, Via Fosso del Cavaliere, 00133 Roma, Italy
| | - Franco Morelli
- Istituto di Genetica
e Biofisica, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Manuela Zonfrillo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle
Ricerche, Via Fosso del Cavaliere, 00133 Roma, Italy
| | - Fausta Ulgheri
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| | - Paola Peluso
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| | - Alberto Mannu
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| | - Francesco Deligia
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| | - Mauro Marchetti
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| | - Giovanni Roviello
- Istituto di Biostrutture e Bioimmagini,
Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Naples, Italy
| | - Atilio Reyes Romero
- Department of Drug Design,
School of Pharmacy, University of Groningen, Antonius Deusinglaan 1 Postbus 196, 9700 AD, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design,
School of Pharmacy, University of Groningen, Antonius Deusinglaan 1 Postbus 196, 9700 AD, Groningen, The Netherlands
| | - Pietro Spanu
- Istituto di Chimica Biomolecolare,
Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy
| |
Collapse
|
49
|
Ait-Aissa K, Ebben JD, Kadlec AO, Beyer AM. Friend or foe? Telomerase as a pharmacological target in cancer and cardiovascular disease. Pharmacol Res 2016; 111:422-433. [PMID: 27394166 PMCID: PMC5026584 DOI: 10.1016/j.phrs.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 12/20/2022]
Abstract
Aging, cancer, and chronic disease have remained at the forefront of basic biological research for decades. Within this context, significant attention has been paid to the role of telomerase, the enzyme responsible for lengthening telomeres, the nucleotide sequences located at the end of chromosomes found in the nucleus. Alterations in telomere length and telomerase activity are a common denominator to the underlying pathology of these diseases. While nuclear-specific, telomere-lengthening effects of telomerase impact cellular/organismal aging and cancer development, non-canonical, extra-nuclear, and non-telomere-lengthening contributions of telomerase have only recently been described and their exact physiological implications are ill defined. Although the mechanism remains unclear, recent reports reveal that the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), regulates levels of mitochondrial-derived reactive oxygen species (mtROS), independent of its established role in the nucleus. Telomerase inhibition has been the target of chemotherapy (directed or indirectly) for over a decade now, yet no telomerase inhibitor is FDA approved and few are currently in late-stage clinical trials, possibly due to underappreciation of the distinct extra-nuclear functions of telomerase. Moreover, evaluation of telomerase-specific therapies is largely limited to the context of chemotherapy, despite reports of the beneficial effects of telomerase activation in the cardiovascular system in relation to such processes as endothelial dysfunction and myocardial infarction. Thus, there is a need for better understanding of telomerase-focused cell and organism physiology, as well as development of telomerase-specific therapies in relation to cancer and extension of these therapies to cardiovascular pathologies. This review will detail findings related to telomerase and evaluate its potential to serve as a therapeutic target.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| | - Johnathan D. Ebben
- Department of Pharmacology & Toxicology
- Cancer Center, Medical College of Wisconsin
| | - Andrew O. Kadlec
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| | - Andreas M. Beyer
- Department of Medicine
- Department of Physiology, Cardiovascular Center
| |
Collapse
|
50
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [PMID: 27118336 DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|