1
|
He B, Dymond L, Wood KH, Bastow ER, Satiaputra J, Li J, Johansson-Percival A, Hamzah J, Kumarasinghe MP, Ballal M, Foo J, Johansson M, Ee HC, White SW, Winteringham L, Ganss R. Immune priming and induction of tertiary lymphoid structures in a cord-blood humanized mouse model of gastrointestinal stromal tumor. Oncoimmunology 2024; 13:2406576. [PMID: 39314905 PMCID: PMC11418220 DOI: 10.1080/2162402x.2024.2406576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Gastrointestinal stromal tumors (GISTs) harbor diverse immune cell populations but so far immunotherapy in patients has been disappointing. Here, we established cord blood humanized mouse models of localized and disseminated GIST to explore the remodeling of the tumor environment for improved immunotherapy. Specifically, we assessed the ability of a cancer vascular targeting peptide (VTP) to bind to mouse and patient GIST angiogenic blood vessels and deliver the TNF superfamily member LIGHT (TNFS14) into tumors. LIGHT-VTP treatment of GIST in humanized mice improved vascular function and tumor oxygenation, which correlated with an overall increase in intratumoral human effector T cells. Concomitant with LIGHT-mediated vascular remodeling, we observed intratumoral high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), which resemble spontaneous TLS found in GIST patients. Thus, by overcoming the limitations of immunodeficient xenograft models, we demonstrate the therapeutic feasibility of vascular targeting and immune priming in human GIST. Since TLS positively correlate with patient prognosis and improved response to immune checkpoint inhibition, vascular LIGHT targeting in GIST is a highly translatable approach to improve immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Larissa Dymond
- Translational Cancer Research Program, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Kira H. Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Edward R. Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Jiulia Satiaputra
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Anna Johansson-Percival
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Juliana Hamzah
- Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | | | - Mohammed Ballal
- Department of General Surgery, Fiona Stanley Hospital, WesternAustralia, Australia
- Division of Surgery, School of Medicine, University of Western Australia, WesternAustralia, Australia
| | - Jonathan Foo
- Division of Surgery, School of Medicine, University of Western Australia, WesternAustralia, Australia
- Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WesternAustralia, Australia
| | - Mikael Johansson
- Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WesternAustralia, Australia
| | - Hooi C. Ee
- Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WesternAustralia, Australia
- Division of Internal Medicine, School of Medicine, University of Western Australia, WesternAustralia, Australia
| | - Scott W. White
- Division of Obstetrics and Gynaecology, Faculty of Medicine, Dentistry, and Health Sciences, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Louise Winteringham
- Translational Cancer Research Program, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
- Translational Cancer Research Program, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WesternAustralia, Australia
| |
Collapse
|
2
|
Li D, Hodges R, AukrustNaqvi M, Bair J, Bispo PJM, Gilmore MS, Gregory-Ksander M, Dartt DA. Staphylococcus aureus activates NRLP3-dependent IL-1β secretion from human conjunctival goblet cells using α toxin and toll-like receptors 2 and 1. Front Cell Infect Microbiol 2023; 13:1265471. [PMID: 38089811 PMCID: PMC10711068 DOI: 10.3389/fcimb.2023.1265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
We used cultured human conjunctival goblet cells to determine (i) whether the toxigenic S. aureus- induced activation of the epithelial goblet cells requires two signals to activate the NLRP3 inflammasome, (ii) if one signal is mediated by TLR1, TLR2, or TLR6, and (iii) if the S. aureus toxin α toxin is another signal for the activation of the inflammasome and secretion of mature IL-1β. Cultured cells were incubated with siRNA to knock down the different TLRs. After stimulation with toxigenic S. aureus RN6390, pro-IL-1β synthesis, caspase-1 activity, and mature IL-1β secretion were measured. In a separate set of experiments, the cells were incubated with toxigenic S. aureus RN6390 or mutant S. aureus ALC837 that does not express α toxin with or without exogenous α toxin. A gentamicin protection assay was used to determine if intracellular bacteria were active. We conclude that α toxin from toxigenic S. aureus triggers two separate mechanisms required for the activation of the NLRP3 inflammasome and secretion of mature IL-1β. In the first mechanism, α toxin secreted from internalized S. aureus produces a pore, allowing the internalized bacteria and associated pathogen-associated molecular patterns to interact with intracellular TLR2 and, to a lesser extent, TLR1. In the second mechanism, α toxin forms a pore in the plasma membrane, leading to an efflux of cytosolic K+ and influx of Ca2+. We conclude that α toxin by these two different mechanisms triggers the synthesis of pro-IL-1β and NLRP3 components, activation of capase-1, and secretion of mature IL-1β to defend against bacterial infection.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Robin Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Maria AukrustNaqvi
- Department of Life Sciences and Health Faculty of Health Sciences Oslo Metropolitan University, Oslo, Norway
| | - Jeffrey Bair
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
| | - Paulo J. M. Bispo
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Michael S. Gilmore
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
- Massachusetts Eye and Ear, Boston, MA, United States
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| | - Darlene A. Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Boston, MA, United States
- Department of Ophthalmology Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Wang K, Zhang X, Ye H, Wang X, Fan Z, Lu Q, Li S, Zhao J, Zheng S, He Z, Ni Q, Chen X, Sun J. Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy. Nat Commun 2023; 14:6748. [PMID: 37875481 PMCID: PMC10598200 DOI: 10.1038/s41467-023-42155-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Cytokine therapy, involving interleukin-15 (IL-15), is a promising strategy for cancer immunotherapy. However, clinical application has been limited due to severe toxicity and the relatively low immune response rate, caused by wide distribution of cytokine receptors, systemic immune activation and short half-life of IL-15. Here we show that a biomimetic nanovaccine, developed to co-deliver IL-15 and an antigen/major histocompatibility complex (MHC) selectively targets IL-15 to antigen-specific cytotoxic T lymphocytes (CTL), thereby reducing off-target toxicity. The biomimetic nanovaccine is composed of cytomembrane vesicles, derived from genetically engineered dendritic cells (DC), onto which IL-15/IL-15 receptor α (IL-15Rα), tumor-associated antigenic (TAA) peptide/MHC-I, and relevant costimulatory molecules are simultaneously anchored. We demonstrate that, in contrast to conventional IL-15 therapy, the biomimetic nanovaccine with multivalent IL-15 self-transpresentation (biNV-IL-15) prolonged blood circulation of the cytokine with an 8.2-fold longer half-life than free IL-15 and improved the therapeutic window. This dual targeting strategy allows for spatiotemporal manipulation of therapeutic T cells, elicits broad spectrum antigen-specific T cell responses, and promotes cures in multiple syngeneic tumor models with minimal systemic side effects.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich, 8092, Switzerland
| | - Xia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China.
| | - Qianqian Ni
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China.
| |
Collapse
|
4
|
Ren Z, Zhang A, Sun Z, Liang Y, Ye J, Qiao J, Li B, Fu YX. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J Clin Invest 2022; 132:153604. [PMID: 35104810 PMCID: PMC8803347 DOI: 10.1172/jci153604] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
PD-1 signaling on T cells is the major pathway that limits T cell immunity, but the efficacy of anti–PD-1 therapy has been limited to a small proportion of patients with advanced cancers. We fortuitously observed that anti–PD-1 therapy depends on IL-2 signaling, which raises the possibility that a lack of IL-2 limits anti–PD-1–induced effector T cell expansion. To selectively deliver IL-2 to PD-1+CD8+ tumor-infiltrating lymphocytes (TILs), we engineered a low-affinity IL-2 paired with anti–PD-1 (PD-1–laIL-2), which reduced affinity to peripheral Treg cells but enhanced avidity to PD-1+CD8+ TILs. PD-1–laIL-2 exerted better tumor control and lower toxicity than single or mixed treatments. Mechanistically, PD-1–laIL-2 could effectively expand dysfunctional and tumor-specific CD8+ T cells. Furthermore, we discovered that presumably dysfunctional PD-1+TIM3+ TILs are the dominant tumor-specific T cells responding to PD-1–laIL-2. Collectively, these results highlight that PD-1–laIL-2 can target and reactivate tumor-specific TILs for tumor regression as a unique strategy with stronger efficacy and lower toxicity.
Collapse
Affiliation(s)
| | | | - Zhichen Sun
- Department of Pathology.,Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, and
| | | | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Pathology.,Department of Basic Medical Science, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Modulation of the Vascular-Immune Environment in Metastatic Cancer. Cancers (Basel) 2021; 13:cancers13040810. [PMID: 33671981 PMCID: PMC7919367 DOI: 10.3390/cancers13040810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced metastatic cancer is rarely curable. While immunotherapy has changed the oncological landscape profoundly, cure in metastatic disease remains the exception. Tumor blood vessels are crucial regulators of tumor perfusion, immune cell influx and metastatic dissemination. Indeed, vascular hyperpermeability is a key feature of primary tumors, the pre-metastatic niche in host tissue and overt metastases at secondary sites. Combining anti-angiogenesis and immune therapies may therefore unlock synergistic effects by inducing a stabilized vascular network permissive for effector T cell trafficking and function. However, anti-angiogenesis therapies, as currently applied, are hampered by intrinsic or adaptive resistance mechanisms at primary and distant tumor sites. In particular, heterogeneous vascular and immune environments which can arise in metastatic lesions of the same individual pose significant challenges for currently approved drugs. Thus, more consideration needs to be given to tailoring new combinations of vascular and immunotherapies, including dosage and timing regimens to specific disease microenvironments.
Collapse
|
6
|
Abstract
Tumor-homing peptides are widely used for improving tumor selectivity of anticancer drugs and imaging agents. The goal is to increase tumor uptake and reduce accumulation at nontarget sites. Here, we describe current approaches for tumor-homing peptide identification and validation, and provide comprehensive overview of classes of tumor-homing peptides undergoing preclinical and clinical development. We focus on unique mechanistic features and applications of a recently discovered class of tumor-homing peptides, tumor-penetrating C-end Rule (CendR) peptides, that can be used for tissue penetrative targeting of extravascular tumor tissue. Finally, we discuss unanswered questions and future directions in the field of development of peptide-guided smart drugs and imaging agents.
Collapse
|
7
|
Skeate JG, Otsmaa ME, Prins R, Fernandez DJ, Da Silva DM, Kast WM. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front Immunol 2020; 11:922. [PMID: 32499782 PMCID: PMC7243824 DOI: 10.3389/fimmu.2020.00922] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor superfamily member 14 (LIGHT) has been in pre-clinical development for over a decade and shows promise as a modality of enhancing treatment approaches in the field of cancer immunotherapy. To date, LIGHT has been used to combat cancer in multiple tumor models where it can be combined with other immunotherapy modalities to clear established solid tumors as well as treat metastatic events. When LIGHT molecules are delivered to or expressed within tumors they cause significant changes in the tumor microenvironment that are primarily driven through vascular normalization and generation of tertiary lymphoid structures. These changes can synergize with methods that induce or support anti-tumor immune responses, such as checkpoint inhibitors and/or tumor vaccines, to greatly improve immunotherapeutic strategies against cancer. While investigators have utilized multiple vectors to LIGHT-up tumor tissues, there are still improvements needed and components to be found within a human tumor microenvironment that may impede translational efforts. This review addresses the current state of this field.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mikk E Otsmaa
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel J Fernandez
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Diane M Da Silva
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Ganss R. Tumour vessel remodelling: new opportunities in cancer treatment. VASCULAR BIOLOGY 2020; 2:R35-R43. [PMID: 32923973 PMCID: PMC7439841 DOI: 10.1530/vb-19-0032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Tumour growth critically depends on a supportive microenvironment, including the tumour vasculature. Tumour blood vessels are structurally abnormal and functionally anergic which limits drug access and immune responses in solid cancers. Thus, tumour vasculature has been considered an attractive therapeutic target for decades. However, with time, anti-angiogenic therapy has evolved from destruction to structural and functional rehabilitation as understanding of tumour vascular biology became more refined. Vessel remodelling or normalisation strategies which alleviate hypoxia are now coming of age having been shown to have profound effects on the tumour microenvironment. This includes improved tumour perfusion, release from immune suppression and lower metastasis rates. Nevertheless, clinical translation has been slow due to challenges such as the transient nature of current normalisation strategies, limited in vivo monitoring and the heterogeneity of primary and/or metastatic tumour environments, calling for more tailored approaches to vascular remodelling. Despite these setbacks, harnessing vascular plasticity provides unique opportunities for anti-cancer combination therapies in particular anti-angiogenic immunotherapy which are yet to reach their full potential.
Collapse
Affiliation(s)
- Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Balza E, Carnemolla B, Orecchia P, Rubartelli A, Poggi A, Mortara L. Tumor Vasculature Targeted TNFα Therapy: Reversion of Microenvironment Anergy and Enhancement of the Anti-tumor Efficiency. Curr Med Chem 2020; 27:4233-4248. [PMID: 30182839 DOI: 10.2174/0929867325666180904121118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Tumor cells and tumor-associated stromal cells such as immune, endothelial and mesenchimal cells create a Tumor Microenvironment (TME) which allows tumor cell promotion, growth and dissemination while dampening the anti-tumor immune response. Efficient anti-tumor interventions have to keep into consideration the complexity of the TME and take advantage of immunotherapy and chemotherapy combined approaches. Thus, the aim of tumor therapy is to directly hit tumor cells and reverse endothelial and immune cell anergy. Selective targeting of tumor vasculature using TNFα-associated peptides or antibody fragments in association with chemotherapeutic agents, has been shown to exert a potent stimulatory effect on endothelial cells as well as on innate and adaptive immune responses. These drug combinations reducing the dose of single agents employed have led to minimize the associated side effects. In this review, we will analyze different TNFα-mediated tumor vesseltargeted therapies in both humans and tumor mouse models, with emphasis on the role played by the cross-talk between natural killer and dendritic cells and on the ability of TNFα to trigger tumor vessel activation and normalization. The improvement of the TNFα-based therapy with anti-angiogenic immunomodulatory drugs that may convert the TME from immunosuppressive to immunostimulant, will be discussed as well.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Paola Orecchia
- Immunology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Policlinico San Martino, Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via Monte Generoso, n. 71, 21100 Varese, Italy
| |
Collapse
|
10
|
Wang J, Saha S, Schaal JL, Yousefpour P, Li X, Chilkoti A. Heuristics for the Optimal Presentation of Bioactive Peptides on Polypeptide Micelles. NANO LETTERS 2019; 19:7977-7987. [PMID: 31642326 DOI: 10.1021/acs.nanolett.9b03141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioactive peptides describe a very large group of compounds with diverse functions and wide applications, and their multivalent display by nanoparticles can maximize their activities. However, the lack of a universal nanoparticle platform and design rules for their optimal presentation limits the development and application of peptide ligand-decorated nanoparticles. To address this need, we developed a multivalent nanoparticle platform to study the impact of nanoparticle surface hydrophilicity and charge on peptide targeting and internalization by tumor cells. This system consists of micelles of a recombinant elastin-like polypeptide diblock copolymer (ELPBC) that present genetically encoded peptides at the micelle surface without perturbing the size, shape, stability, or peptide valency of the micelle, regardless of the peptide type. We created the largest extant set of 98 combinations of 15 tumor-homing peptides that are presented on the corona of this ELPBC micelle via 8 different peptide linkers that vary in their length and charge and also created control micelles that present the linker only. Analysis of the structure-function relationship of tumor cell targeting by this set of peptide-decorated nanoparticles enabled us to derive heuristics to optimize the delivery of peptides based on their physicochemical properties and to identify a peptide that is likely to be a widely useful ligand for targeting across nanoparticle types. This study shows that ELPBC micelles are a robust and convenient system for the presentation of diverse peptides and provides useful insights into the appropriate presentation of structurally diverse peptide ligands on nanoparticles based on their physicochemical properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
11
|
Lingasamy P, Tobi A, Haugas M, Hunt H, Paiste P, Asser T, Rätsep T, Kotamraju VR, Bjerkvig R, Teesalu T. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials 2019; 219:119373. [PMID: 31374479 DOI: 10.1016/j.biomaterials.2019.119373] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.
Collapse
Affiliation(s)
- Prakash Lingasamy
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, 50411, Tartu, Estonia
| | - Toomas Asser
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Tõnu Rätsep
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Rolf Bjerkvig
- Department of Biomedicine Translational Cancer Research, University of Bergen, 5020, Bergen, Norway
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
12
|
Johansson-Percival A, He B, Ganss R. Immunomodulation of Tumor Vessels: It Takes Two to Tango. Trends Immunol 2018; 39:801-814. [DOI: 10.1016/j.it.2018.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022]
|
13
|
He B, Jabouille A, Steri V, Johansson-Percival A, Michael IP, Kotamraju VR, Junckerstorff R, Nowak AK, Hamzah J, Lee G, Bergers G, Ganss R. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J Pathol 2018; 245:209-221. [PMID: 29603739 DOI: 10.1002/path.5080] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bo He
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Arnaud Jabouille
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Veronica Steri
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Anna Johansson-Percival
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Iacovos P Michael
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Reimar Junckerstorff
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia.,PathWest Neuropathology, Royal Perth Hospital, Perth, Australia
| | - Anna K Nowak
- School of Medicine, University of Western Australia, Nedlands, Australia
| | - Juliana Hamzah
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Gabriel Lee
- School of Surgery, University of Western Australia, Nedlands, Australia.,St John of God Subiaco Hospital, Subiaco, Australia
| | - Gabriele Bergers
- Department of Neurological Surgery, Brain Tumour Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,VIB Centre for Cancer Biology Vesalius and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ruth Ganss
- The Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Australia
| |
Collapse
|
14
|
Johansson-Percival A, He B, Li ZJ, Kjellén A, Russell K, Li J, Larma I, Ganss R. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat Immunol 2017; 18:1207-1217. [DOI: 10.1038/ni.3836] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
|
15
|
Mondino A, Vella G, Icardi L. Targeting the tumor and its associated stroma: One and one can make three in adoptive T cell therapy of solid tumors. Cytokine Growth Factor Rev 2017. [DOI: 10.1016/j.cytogfr.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
The Effect of RGD/NGR Peptide Modification of Melanoma Differentiation-Associated Gene-7/Interleukin-24 on Its Receptor Attachment, an In Silico Analysis. Cancer Biother Radiopharm 2017; 32:205-214. [DOI: 10.1089/cbr.2017.2195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Satpati D, Sharma R, Kumar C, Sarma HD, Dash A. 68Ga-Chelation and comparative evaluation of N, N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine- N, N'-diacetic acid (HBED-CC) conjugated NGR and RGD peptides as tumor targeted molecular imaging probes. MEDCHEMCOMM 2017; 8:673-679. [PMID: 30108785 DOI: 10.1039/c7md00006e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 01/15/2023]
Abstract
Peptides containing RGD and NGR motifs display high affinity towards tumor vasculature molecular markers, integrin αvβ3 and CD13 receptors, respectively. In the present study, RGD and NGR peptides were conjugated with the novel acyclic chelator N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) for radiolabeling with 68Ga. The radiotracers [68Ga-HBED-CC-c(NGR)] and [68Ga-HBED-CC-c(RGD)] were quite hydrophilic with respective log P values being -2.8 ± 0.14 and -2.1 ± 0.17. 68Ga-HBED-CC-c(RGD) displayed a significantly higher (p < 0.05) uptake in murine melanoma B16F10 tumors as compared to 68Ga-HBED-CC-c(NGR) indicating its higher specificity towards integrin αvβ3-positive tumors. The two radiotracers showed similar uptake in CD13-positive human fibrosarcoma HT-1080 tumor xenografts (∼1.5 ± 0.2% ID g-1). The tumor uptake of the two radiotracers was significantly reduced (p < 0.05) in both animal models during blocking studies. The tumor-to-blood ratio was observed to be ∼2-2.5 for the two radiotracers, whereas the tumor-to-muscle ratio was significantly higher (p < 0.005) for 68Ga-HBED-CC-c(RGD) in the two animal models. The two radiotracers 68Ga-HBED-CC-c(NGR) and 68Ga-HBED-CC-c(RGD) exhibited renal excretion with rapid clearance from blood and other non-target organs. Thus, 68Ga-chelated HBED-CC conjugated NGR and RGD peptides expressed features conducive towards development as tumor targeted molecular imaging probes. This study further opens avenues for the successful conjugation of different peptides with the acyclic chelator HBED-CC and expansion of 68Ga-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Division , Bhabha Atomic Research Centre , Mumbai , India . ; ; Tel: +91 22 25590748
| | - Rohit Sharma
- Radiopharmaceuticals Division , Bhabha Atomic Research Centre , Mumbai , India . ; ; Tel: +91 22 25590748
| | - Chandan Kumar
- Radiopharmaceuticals Division , Bhabha Atomic Research Centre , Mumbai , India . ; ; Tel: +91 22 25590748
| | - Haladhar Dev Sarma
- Radiation Biology and Health Science Division , Bhabha Atomic Research Centre , Mumbai , India
| | - Ashutosh Dash
- Radiopharmaceuticals Division , Bhabha Atomic Research Centre , Mumbai , India . ; ; Tel: +91 22 25590748
| |
Collapse
|
18
|
Järvinen TAH, Rashid J, Valmari T, May U, Ahsan F. Systemically Administered, Target-Specific Therapeutic Recombinant Proteins and Nanoparticles for Regenerative Medicine. ACS Biomater Sci Eng 2017; 3:1273-1282. [DOI: 10.1021/acsbiomaterials.6b00746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tero A. H. Järvinen
- Faculty
of Medicine and Life Sciences, University of Tampere, Lääkärinkatu
1, 33014 Tampere, Finland
- Department of Orthopedics & Traumatology, Tampere University Hospital, Teiskontie 35, 33520 Tampere, Finland
| | - Jahidur Rashid
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Street, Amarillo, Texas 79106, United States
| | - Toini Valmari
- Faculty
of Medicine and Life Sciences, University of Tampere, Lääkärinkatu
1, 33014 Tampere, Finland
| | - Ulrike May
- Faculty
of Medicine and Life Sciences, University of Tampere, Lääkärinkatu
1, 33014 Tampere, Finland
| | - Fakhrul Ahsan
- Department
of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Street, Amarillo, Texas 79106, United States
| |
Collapse
|
19
|
Zhang W, Chen L, Ma K, Zhao Y, Liu X, Wang Y, Liu M, Liang S, Zhu H, Xu N. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells. Oncotarget 2016; 7:75366-75378. [PMID: 27683110 PMCID: PMC5342747 DOI: 10.18632/oncotarget.12207] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/13/2016] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth.
Collapse
Affiliation(s)
- Weina Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
20
|
Abstract
Recent exciting progress in cancer immunotherapy has ushered in a new era of cancer treatment. Immunotherapy can elicit unprecedented durable responses in advanced cancer patients that are much greater than conventional chemotherapy. However, such responses only occur in a relatively small fraction of patients. A positive response to immunotherapy usually relies on dynamic interactions between tumor cells and immunomodulators inside the tumor microenvironment (TME). Depending on the context of these interactions, the TME may play important roles to either dampen or enhance immune responses. Understanding the interactions between immunotherapy and the TME is not only critical to dissect the mechanisms of action but also important to provide new approaches in improving the efficiency of current immunotherapies. In this review, we will highlight recent work on how the TME can influence the efficacy of immunotherapy as well as how manipulating the TME can improve current immunotherapy regimens in some cases.
Collapse
Affiliation(s)
- Haidong Tang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jian Qiao
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Johansson-Percival A, Li ZJ, Lakhiani D, He B, Wang X, Hamzah J, Ganss R. Intratumoral LIGHT Restores Pericyte Contractile Properties and Vessel Integrity. Cell Rep 2015; 13:2687-98. [DOI: 10.1016/j.celrep.2015.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
|
22
|
Johansson A, Hamzah J, Ganss R. More than a scaffold: Stromal modulation of tumor immunity. Biochim Biophys Acta Rev Cancer 2015; 1865:3-13. [PMID: 26071879 DOI: 10.1016/j.bbcan.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/25/2022]
Abstract
Current clinical success with anti-cancer immunotherapy provides exciting new treatment opportunities. While encouraging, more needs to be done to induce durable effects in a higher proportion of patients. Increasing anti-tumor effector T cell quantity or quality alone does not necessarily correlate with therapeutic outcome. Instead, the tumor microenvironment is a critical determinant of anti-cancer responsiveness to immunotherapy and can confer profound resistance. Yet, the tumor-promoting environment - due to its enormous plasticity - also delivers the best opportunities for adjuvant therapy aiming at recruiting, priming and sustaining anti-tumor cytotoxicity. While the tumor environment as an entity is increasingly well understood, current interventions are still broad and often systemic. In contrast, tumors grow in a highly compartmentalized environment which includes the vascular/perivascular niche, extracellular matrix components and in some tumors lymph node aggregates; all of these structures harbor and instruct subsets of immune cells. Targeting and re-programming specific compartments may provide better opportunities for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Anna Johansson
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging and Therapy, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, The University of Western Australia, Centre for Medical Research, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
23
|
Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, Zhang J, Wang Y, Dong L, Wang C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014; 35:10046-57. [PMID: 25245263 DOI: 10.1016/j.biomaterials.2014.09.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
Tumour-associated macrophages (TAMs) are a set of macrophages residing in the tumour microenvironment. They play essential roles in mediating tumour angiogenesis, metastasis and immune evasion. Delivery of therapeutic agents to eliminate TAMs can be a promising strategy for cancer immunotherapy but an efficient vehicle to target these cells is still in pressing need. In this study, we developed a bisphosphonate-glucomannan conjugate that could efficiently target and specifically eliminate TAMs in the tumour microenvironment. We employed the polysaccharide from Bletilla striata (BSP), a glucomannan affinitive for macrophages that express abundant mannose receptors, to conjugate alendronate (ALN), a bisphosphonate compound with in vitro macrophage-inhibiting activities. In both in vitro and in vivo tests, the prepared ALN-BSP conjugate could preferentially accumulate in macrophages and induced them into apoptosis. In the subcutaneous S180 tumour-bearing mice model, the treatment using ALN-BSP effectively eliminated TAMs, remarkably inhibited angiogenesis, recovered local immune surveillance, and eventually suppressed tumour progression, without eliciting any unwanted effect such as systematic immune response. Interestingly, ALN alone failed to exhibit any anti-TAM activity in vivo, probably because this compound was susceptible to the mildly acidic tumour microenvironment. Taken together, these results demonstrate the potential of ALN-BSP as a safe and efficient tool targeted at direct depletion of TAMs for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiudan Zhan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lixin Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Haixia Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
24
|
Dominietto M, Tsinoremas N, Capobianco E. Integrative analysis of cancer imaging readouts by networks. Mol Oncol 2014; 9:1-16. [PMID: 25263240 PMCID: PMC5528685 DOI: 10.1016/j.molonc.2014.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 02/01/2023] Open
Abstract
Cancer is a multifactorial and heterogeneous disease. The corresponding complexity appears at multiple levels: from the molecular and the cellular constitution to the macroscopic phenotype, and at the diagnostic and therapeutic management stages. The overall complexity can be approximated to a certain extent, e.g. characterized by a set of quantitative phenotypic observables recorded in time‐space resolved dimensions by using multimodal imaging approaches. The transition from measures to data can be made effective through various computational inference methods, including networks, which are inherently capable of mapping variables and data to node‐ and/or edge‐valued topological properties, dynamic modularity configurations, and functional motifs. We illustrate how networks can integrate imaging data to explain cancer complexity, and assess potential pre‐clinical and clinical impact. Computational Multiplexing Imaging merges imaging and networks. Networks show signatures of tumor heterogeneity and phenotypic profiles observed in‐vivo. A profile ensemble establishes a tumor fingerprint, and this constitutes a novel type of marker. Personalized treatment is embedded in a systems medicine approach.
Collapse
Affiliation(s)
- Marco Dominietto
- Biomaterial Science Center, University of Basel, Basel, Switzerland; Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | | | - Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL, USA; Laboratory of Integrative Systems Medicine, Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|