1
|
Porat J, Flynn RA. Cell surface RNA biology: new roles for RNA binding proteins. Trends Biochem Sci 2025; 50:402-416. [PMID: 40157881 PMCID: PMC12048239 DOI: 10.1016/j.tibs.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
Much of our understanding of RNA-protein interactions, and how these interactions shape gene expression and cell state, have come from studies looking at these interactions in vitro or inside the cell. However, recent data demonstrates the presence of extracellular and cell surface-associated RNA such as glycosylated RNA (glycoRNA), suggesting an entirely new environment and cellular topology in which to study RNA-RNA binding protein (RBP) interactions. Here, we explore emerging ideas regarding the landscape of cell surface RNA and RBPs. We also discuss open questions concerning the trafficking and anchoring of RBPs to the cell surface, whether cell surface RBPs (csRBPs) directly interact with cell surface RNA, and how changes in the presentation of csRBPs may drive autoimmune responses.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Williams SG, Sim S, Wolin SL. RNA sensing at the crossroads of autoimmunity and autoinflammation. RNA (NEW YORK, N.Y.) 2025; 31:369-381. [PMID: 39779213 PMCID: PMC11874990 DOI: 10.1261/rna.080304.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Immune-mediated diseases are common in humans. The immune system is a complex host defense system that evolved to protect us from pathogens, but also plays an important role in homeostatic processes, removing dead or senescent cells, and participating in tumor surveillance. The human immune system has two arms: the older innate immune system and the newer adaptive immune system. Sensing of foreign RNA is critical to the innate immune system's ability to recognize pathogens, especially viral infections. However, RNA sensors are also strongly implicated in autoimmune and autoinflammatory diseases, highlighting the importance of balancing pathogen recognition with tolerance to host RNAs that can resemble their viral counterparts. We describe how RNA sensors bind their ligands, how this binding is coupled to upregulation of type I interferon-stimulated genes, and the ways in which mutations in RNA sensors and genes that play important roles in RNA homeostasis have been linked to autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Sandra G Williams
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
3
|
Bertin D, Babacci B, Brodovitch A, Dubrou C, Heim X, Mege JL, Bardin N. Deciphering the Reactivity of Autoantibodies Directed against the RNP-A, -C and 70 kDa Components of the U1-snRNP Complex: "Double or Nothing"? Biomedicines 2024; 12:1552. [PMID: 39062124 PMCID: PMC11275026 DOI: 10.3390/biomedicines12071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The positivity of anti-RNP autoantibodies as biological criteria for the diagnosis of mixed connective tissue disease (MCTD) has recently divided the rheumatology community. Autoantigenicity of the U1-snRNP complex tends to generate multiple autoantibodies against RNP-A, -C and -70 KDa or Sm proteins. The aim of this study is to identify the most informative autoantibodies in clinical practice, in particular, to contribute to differential diagnosis between MCTD and systemic lupus erythematosus (SLE). Methods: Sera from 74 patients positive for anti-RNP autoantibodies were selected over a period of one year of laboratory practice. Autoantibodies directed against extractable nuclear antigen, RNP proteins (A, C, 70 KDa) and 40 kDa fragments of RNP-70 KDa were investigated by using quantitative fluoroenzymatic assay and Western blot analysis. Results: Among the 74 patients, 40 patients were diagnosed with SLE, 20 with MCTD, six with another autoimmune disease, three with SARS-CoV-2 infection, three with cancer and two were healthy. No preferential clinical association of IgG or IgM autoantibodies directed against each of the RNP proteins was found between SLE and MCTD. In contrast, the proportion of autoantibodies directed against the RNP component within the U1-snRNP complex showed a significantly higher RNP index in patients with MCTD than in those with SLE (p = 0.011), with good performance (sensitivity: 69.2%, specificity: 88.9%). Conclusions: The analysis of the proportion of the different autoantibodies directed against the U1-snRNP complex is more informative than the analysis of each autoantibody separately. A follow-up of patients could be informative about the interest of the RNP index as a predictor of disease evolution.
Collapse
Affiliation(s)
- Daniel Bertin
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Benjamin Babacci
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Alexandre Brodovitch
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| | - Cléa Dubrou
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Xavier Heim
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Jean Louis Mege
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix-Marseille Univ, CNRS, ADES UMR 7268, 13005 Marseille, France
| | - Nathalie Bardin
- Service d’Immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| |
Collapse
|
4
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Topi S, Bottalico L, Charitos IA, Colella M, Di Domenico M, Palmirotta R, Santacroce L. Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe? PATHOPHYSIOLOGY 2022; 29:507-536. [PMID: 36136068 PMCID: PMC9505211 DOI: 10.3390/pathophysiology29030041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The use of innovative approaches to elucidate the pathophysiological mechanisms of autoimmune diseases, as well as to further study of the factors which can have either a positive or negative effect on the course of the disease, is essential. In this line, the development of new molecular techniques and the creation of the Human Genome Program have allowed access to many more solutions to the difficulties that exist in the identification and characterization of the microbiome, as well as changes due to various factors. Such innovative technologies can rekindle older hypotheses, such as molecular mimicry, allowing us to move from hypothesis to theory and from correlation to causality, particularly regarding autoimmune diseases and dysbiosis of the microbiota. For example, Prevotella copri appears to have a strong association with rheumatoid arthritis; it is expected that this will be confirmed by several scientists, which, in turn, will make it possible to identify other mechanisms that may contribute to the pathophysiology of the disease. This article seeks to identify new clues regarding similar correlations between autoimmune activity and the human microbiota, particularly in relation to qualitative and quantitative microbial variations therein.
Collapse
Affiliation(s)
- Skender Topi
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, School of Medicine, University of Bari, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology , School of Medicine, University of Bari, 70124 Bari, Italy
| |
Collapse
|
6
|
Anti-Ro52/TRIM21 serological subsets identify differential clinical and laboratory parameters. Clin Rheumatol 2022; 41:3495-3501. [PMID: 35871174 PMCID: PMC9568495 DOI: 10.1007/s10067-022-06299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022]
Abstract
Introduction Anti-Ro52/tripartite motif-containing protein 21 (TRIM21) IgG is one of the most common autoantibodies found in systemic autoimmune diseases and is typically found in conjunction with anti-Ro60 and/or anti-La. A retrospective, cross-sectional study was undertaken to examine the clinical and laboratory features of two serological subsets: patients with anti-Ro52/TRIM21 autoantibodies in the absence of anti-Ro60 and anti-La (isolated anti-Ro52/TRIM21) and patients with anti-Ro52/TRIM21 in the presence of anti-Ro60 and/or anti-La. Methods Over a 12-month period, patients tested positive for anti-Ro52/TRIM21 via line immunoassay (LIA) at the Westmead Hospital (Australia) immunopathology laboratory were included. The presence of anti-Ro60 and/or anti-La via same LIA was noted. Associated laboratory and medical records were perused to extract demographic, laboratory, and clinical information. Results There were 346 patients within the study period, and 39.9% of the patients positive for anti-Ro52/TRIM21 lacked anti-Ro60/anti-La autoantibodies. Isolated anti-Ro52/TRIM21 patients tend to be older, have lower anti-Ro52/TRIM21 titres, have lower rheumatoid factors, and have lower proportions of neutropaenia compared to patients who were positive for anti-Ro52/TRIM21 and anti-Ro60/La. This occurred independent to diagnoses of Sjögren’s syndrome or systemic lupus erythematosus. Coexisting neurological syndromes, pulmonary pathologies, and malignancies were more prevalent in the isolated anti-Ro52/TRIM21 subset. Conclusions Patients with isolated anti-Ro52/TRIM21 tend to have distinct and important clinical and laboratory associations. It is unclear if these patients evolve or remain a stable subset and how they originate immunologically. Longitudinal and prospective studies are required to ascertain the overall predictive and prognostic value of this stratification.Key Points • Anti-Ro52/TRIM21 is an autoantibody found in autoimmunity and non-immunological conditions. • Sixty percent of anti-Ro52/TRIM21 patients are positive for anti-Ro60. • Isolated anti-Ro52/TRIM21 has reduced anti-Ro52/TRIM21 and rheumatoid factor titres. • Isolated anti-Ro52/TRIM21 is associated with anaemia and malignancies. |
Supplementary Information The online version contains supplementary material available at 10.1007/s10067-022-06299-5.
Collapse
|