1
|
Rydder PM, Andreasen L, Thomsen SH, Jensen UB, Becher N, Dunø M, Vogel I. Mosaic STS gene deletions in chorionic villus samples are often confined to the placenta, and they differ in size from STS gene deletions in patients with X-linked Ichthyosis. Placenta 2025; 165:16-22. [PMID: 40157041 DOI: 10.1016/j.placenta.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/28/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE This study presents several cases of mosaicism for STS gene deletions in uncultured chorionic villus samples analyzed with chromosomal microarray without prior trypsinization. We aimed to confirm these results with MLPA on the chorionic villus samples and to evaluate the presence of mosaicism in follow-up amniocentesis. METHODS We retrospectively collected cases of prenatally identified STS gene deletions in chorionic villus samples and amniocenteses at Aarhus University Hospital. A subgroup with mosaic microarray results was analyzed with MLPA. RESULTS Four non-mosaic (of which three were inherited) and 16 mosaic STS gene deletions were identified. Mosaicism was confirmed with MLPA in all cases suitable for MLPA analysis. All 10 mosaic cases with follow-up amniocentesis showed normal results. In general, STS gene deletions in a mosaic state were smaller in size and had breakpoints located within the common fragile site FRAXB, whereas non-mosaic STS deletions were larger with breakpoints located close to VCX genes. Deletion size differed significantly between mosaic cases of this study and STS gene deletions in patients with X-linked Ichthyosis reported in ClinVar. CONCLUSION We report and confirm several cases of placental mosaicism for STS gene deletions. All mosaic cases with follow-up amniocentesis were confined to the placenta. Mosaic deletions likely arose from strand breaks at the common fragile site FRAXB, whereas the classical non-mosaic genotype found in patients with X-linked Ichthyosis arises from non-allelic homologous recombination during meiosis. These results support the existing hypothesis that placental mosaicism for copy number variants likely arise in common fragile sites.
Collapse
Affiliation(s)
- Pernille Marker Rydder
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Lotte Andreasen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark
| | - Simon Horsholt Thomsen
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Naja Becher
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Ida Vogel
- Center for Fetal Diagnostics, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21C, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
2
|
Verstraete MH, Dini P, Orellana D, Uribe-Salazar JM, Veras MM, Carneiro F, Daels P, Fernandes CB. Placental homogeneity: Characterizing transcriptional variation among equine chorioallantoic locations. Theriogenology 2024; 229:75-82. [PMID: 39167835 DOI: 10.1016/j.theriogenology.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies. Here, we hypothesized that the molecular differences across different regions of the equine placenta are negligible because of its diffuse placental type with a macroscopic homogenous distribution of villi across the placental surface. We compared the transcriptome and stereological findings of the body, pregnant horn, and non-pregnant horn within the equine chorioallantois. Our transcriptomic analysis indicates that the variation between regions of the placenta within individuals is less than the variation observed between individuals. A low number of differentially expressed genes (DEGs) (n = 8) was identified when comparing pregnant and non-pregnant horns within the same placenta, suggesting a remarkable molecular uniformity. A higher number of DEGs was identified when comparing each horn to the body (193 DEGs comparing pregnant horn with body and 207 DEGs comparing non-pregnant horn with body). Genes with a higher expression in the body were associated with processes such as extracellular matrix synthesis and remodeling, which is relevant for placental maturation and placenta-endometrial separation at term and implies asynchrony of these processes across locations. The stereological analysis showed no differences in microcotyledonary density, and width between the locations. However, we observed a greater chorioallantoic thickness in the body and pregnant horn compared to the non-pregnant horn. Overall, our findings reveal a uniform transcriptomic profile across the placental horns, alongside a more distinct gene expression pattern between the uterine body and horns. These regional differences in gene expression suggest a different pace in the placental maturation and detachment among the placental locations.
Collapse
Affiliation(s)
- Margo H Verstraete
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Daniela Orellana
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Mariana M Veras
- Laboratory of environmental and experimental pathology, School of medicine, University of São Paulo, Brazil
| | - Francieli Carneiro
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Peter Daels
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Claudia B Fernandes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| |
Collapse
|
3
|
Varberg KM, Moreno-Irusta A, Novoa A, Musser B, Varberg JM, Goering JP, Saadi I, Iqbal K, Okae H, Arima T, Williams J, Pisarska MD, Soares MJ. Leveraging chorionic villus biopsies for the derivation of patient-specific trophoblast stem cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.12.07.22283218. [PMID: 39108523 PMCID: PMC11302605 DOI: 10.1101/2022.12.07.22283218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Human trophoblast stem (TS) cells are an informative in vitro model for the generation and testing of biologically meaningful hypotheses. The goal of this project was to derive patient-specific TS cell lines from clinically available chorionic villus sampling biopsies. Cell outgrowths were captured from human chorionic villus tissue specimens cultured in modified human TS cell medium. Cell colonies emerged early during the culture and cell lines were established and passaged for several generations. Karyotypes of the newly established chorionic villus-derived trophoblast stem (TS CV ) cell lines were determined and compared to initial genetic diagnoses from freshly isolated chorionic villi. Phenotypes of TSCV cells in the stem state and following differentiation were compared to cytotrophoblast-derived TS (TS CT ) cells. TSCV and TSCT cells uniformly exhibited similarities in the stem state and following differentiation into syncytiotrophoblast and extravillous trophoblast cells. Chorionic villus tissue specimens provide a valuable source for TS cell derivation. They expand the genetic diversity of available TS cells and are associated with defined clinical outcomes. TSCV cell lines provide a new set of experimental tools for investigating trophoblast cell lineage development.
Collapse
Affiliation(s)
- Kaela M. Varberg
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ayelen Moreno-Irusta
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Allynson Novoa
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Brynne Musser
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Jeremy P. Goering
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Irfan Saadi
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Khursheed Iqbal
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Margareta D. Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael J. Soares
- 1nstitute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
4
|
Mahadevan A, Tipler A, Jones H. Shared developmental pathways of the placenta and fetal heart. Placenta 2023; 141:35-42. [PMID: 36604258 DOI: 10.1016/j.placenta.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Congenital heart defects (CHD) remain the most common class of birth defect worldwide, affecting 1 in every 110 live births. A host of clinical and morphological indicators of placental dysfunction are observed in pregnancies complicated by fetal CHD and, with the recent emergence of single-cell sequencing capabilities, the molecular and physiological associations between the embryonic heart and developing placenta are increasingly evident. In CHD pregnancies, a hostile intrauterine environment may negatively influence and alter fetal development. Placental maldevelopment and dysfunction creates this hostile in-utero environment and may manifest in the development of various subtypes of CHD, with downstream perfusion and flow-related alterations leading to yet further disruption in placental structure and function. The adverse in-utero environment of CHD-complicated pregnancies is well studied, however the specific etiological role that the placenta plays in CHD development remains unclear. Many mouse and rat models have been used to characterize the relationship between CHD and placental dysfunction, but these paradigms present substantial limitations in the assessment of both the heart and placenta. Improvements in non-invasive placental assessment can mitigate these limitations and drive human-specific investigation in relation to fetal and placental development. Here, we review the clinical, structural, and molecular relationships between CHD and placental dysfunction, the CHD subtype-dependence of these changes, and the future of Placenta-Heart axis modeling and investigation.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA
| | - Alyssa Tipler
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA
| | - Helen Jones
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA.
| |
Collapse
|
5
|
Wang LQ, Fernandez-Boyano I, Robinson WP. Genetic variation in placental insufficiency: What have we learned over time? Front Cell Dev Biol 2022; 10:1038358. [PMID: 36313546 PMCID: PMC9613937 DOI: 10.3389/fcell.2022.1038358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation shapes placental development and function, which has long been known to impact fetal growth and pregnancy outcomes such as miscarriage or maternal pre-eclampsia. Early epidemiology studies provided evidence of a strong heritable component to these conditions with both maternal and fetal-placental genetic factors contributing. Subsequently, cytogenetic studies of the placenta and the advent of prenatal diagnosis to detect chromosomal abnormalities provided direct evidence of the importance of spontaneously arising genetic variation in the placenta, such as trisomy and uniparental disomy, drawing inferences that remain relevant to this day. Candidate gene approaches highlighted the role of genetic variation in genes influencing immune interactions at the maternal-fetal interface and angiogenic factors. More recently, the emergence of molecular techniques and in particular high-throughput technologies such as Single-Nucleotide Polymorphism (SNP) arrays, has facilitated the discovery of copy number variation and study of SNP associations with conditions related to placental insufficiency. This review integrates past and more recent knowledge to provide important insights into the role of placental function on fetal and perinatal health, as well as into the mechanisms leading to genetic variation during development.
Collapse
Affiliation(s)
- Li Qing Wang
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Icíar Fernandez-Boyano
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wendy P. Robinson
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|