1
|
Lunavat TR, Nieland L, van de Looij SM, de Reus AJEM, Couturier CP, Farran CAE, Miller TE, Lill JK, Schübel M, Xiao T, Ianni ED, Woods EC, Sun Y, Rufino-Ramos D, van Solinge TS, Mahjoum S, Grandell E, Li M, Mangena V, Dunn GP, Jenkins RW, Mempel TR, Breakefield XO, Breyne K. Intratumoral gene delivery of 4-1BBL boosts IL-12-triggered anti-glioblastoma immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636330. [PMID: 39975249 PMCID: PMC11838556 DOI: 10.1101/2025.02.03.636330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The standard of care in high-grade gliomas has remained unchanged in the past 20 years. Efforts to replicate effective immunotherapies in non-cranial tumors have led to only modest therapeutical improvements in glioblastoma (GB). Here, we demonstrate that intratumoral administration of recombinant interleukin-12 (rIL-12) promotes local cytotoxic CD8 POS T cell accumulation and conversion into an effector-like state, resulting in a dose-dependent survival benefit in preclinical GB mouse models. This tumor-reactive CD8 T cell response is further supported by intratumoral rIL-12-sensing dendritic cells (DCs) and is accompanied by the co-stimulatory receptor 4-1BB expression on both cell types. Given that DCs and CD8 POS T cells are functionally suppressed in the tumor microenvironments of de novo and recurrent glioma patients, we tested whether anti-tumor response at the rIL-12-inflamed tumor site could be enhanced with 4-1BBL, the ligand of 4-1BB. 4-1BBL was delivered using an adeno-associated virus (AAV) vector targeting GFAP-expressing cells and resulted in prolonged survival of rIL-12 treated GB-bearing mice. This study establishes that tumor antigen-specific CD8 T cell activity can be directed using an AAV-vector-mediated gene therapy approach, effectively enhancing anti-GB immunity.
Collapse
|
2
|
Inniss MC, Smith SG, Li DJ, Primack B, Sun D, Olinger GY, Sheahan KL, Ross T, Langley M, Young V, Alvarado A, Davoodi S, Geng J, Schebesta M, Ols ML, Tchaicha J, Ter Meulen J, Sethi DK. Carbonic anhydrase 2-derived drug-responsive domain regulates membrane-bound cytokine expression and function in engineered T cells. Commun Biol 2025; 8:28. [PMID: 39789216 PMCID: PMC11718131 DOI: 10.1038/s42003-024-07410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2). The CA2-DRD can be stabilized in vitro and in vivo with the FDA-approved small-molecule CA2 inhibitor acetazolamide (ACZ). We develop conditional degrons using library-based screening of mutants and show characterization of one DRD using crystallography and molecular dynamics (MD) simulations. Using protein-engineering solutions to increase the valency of DRDs fused to the cargo we have developed "modulation hubs" and show tight regulation of membrane-bound cytokines IL2, IL12, IL15, IL21, IL23, and IFNα in genetically engineered T cells. Finally, CA2-DRD regulated IL12 mediates regulated efficacy in a solid tumor model. Regulation of pleotropic cytokines potentially paves the way to safely use these powerful cytokines in ACT for cancer treatment.
Collapse
Affiliation(s)
| | | | - Dan Jun Li
- Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Dexue Sun
- Obsidian Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lim J, Lee HK. Engineering interferons for cancer immunotherapy. Biomed Pharmacother 2024; 179:117426. [PMID: 39243429 DOI: 10.1016/j.biopha.2024.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Interferons are a family of cytokines that are famously known for their involvement in innate and adaptive immunity. Type I interferons (IFNs) exert pleiotropic effects on various immune cells and contribute to tumor-intrinsic and extrinsic mechanisms. Their pleiotropic effects and ubiquitous expression on nucleated cells have made them attractive candidates for cytokine engineering to deliver to largely immunosuppressive tumors. Type III interferons were believed to play overlapping roles with type I IFNs because they share a similar signaling pathway and induce similar transcriptional programs. However, type III IFNs are unique in their cell specific receptor expression and their antitumor activity is specific to a narrow range of cell types. Thus, type III IFN based therapies may show reduced toxic side effects compared with type I IFN based treatment. In this review, we focus on the development of IFN-based therapeutics used to treat different tumors. We highlight how the development in cytokine engineering has allowed for efficient delivery of type I and type III IFNs to tumor sites and look ahead to the obstacles that are still associated with IFN-based therapies before they can be fully and safely integrated into clinical settings.
Collapse
Affiliation(s)
- Juhee Lim
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Laboratory of Host Defenses, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute of Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Huang J, Ji L, Si J, Yang X, Luo Y, Zheng X, Ye L, Li Y, Wang S, Ge T, Tong X, Cai Y, Mou X. Platelet membrane-coated oncolytic vaccinia virus with indocyanine green for the second near-infrared imaging guided multi-modal therapy of colorectal cancer. J Colloid Interface Sci 2024; 671:216-231. [PMID: 38801796 DOI: 10.1016/j.jcis.2024.05.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.
Collapse
Affiliation(s)
- Jiaqing Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Lichen Ji
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingxing Si
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xue Yang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yanxi Luo
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310059, China
| | - Xiaoyan Zheng
- Department of Laboratory Medicine Department, People's Hospital of Quzhou, Wenzhou Medical University, Quzhou 324002, China
| | - Luyi Ye
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yishu Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Shibing Wang
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Tong Ge
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiangmin Tong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
5
|
Liang X, Zhong HJ, Ding H, Yu B, Ma X, Liu X, Chong CM, He J. Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications. Polymers (Basel) 2024; 16:2755. [PMID: 39408464 PMCID: PMC11478944 DOI: 10.3390/polym16192755] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Polyvinyl alcohol (PVA)-based hydrogels have attracted significant attention due to their excellent biocompatibility, tunable mechanical properties, and ability to form stable three-dimensional networks. This comprehensive review explores the recent advancements in PVA-based hydrogels, focusing on their unique properties, fabrication strategies, and multifunctional applications. Firstly, it discusses various facile synthesis techniques, including freeze/thaw cycles, chemical cross-linking, and enhancement strategies, which have led to enhanced mechanical strength, elasticity, and responsiveness to external stimuli. These improvements have expanded the applicability of PVA-based hydrogels in critical areas such as biomedical, environmental treatment, flexible electronics, civil engineering, as well as other emerging applications. Additionally, the integration of smart functionalities, such as self-healing capabilities and multi-responsiveness, is also examined. Despite progress, challenges remain, including optimizing mechanical stability under varying conditions and addressing potential toxicity of chemical cross-linkers. The review concludes by outlining future perspectives, emphasizing the potential of PVA-based hydrogels in emerging fields like regenerative medicine, environmental sustainability, and advanced manufacturing. It underscores the importance of interdisciplinary collaboration in realizing the full potential of these versatile materials to address pressing societal challenges.
Collapse
Affiliation(s)
- Xiaoxu Liang
- School of Arts and Sciences, Guangzhou Maritime University, Guangzhou 510725, China; (X.L.); (X.M.); (X.L.)
| | - Hai-Jing Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China;
| | - Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China;
| | - Biao Yu
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiao Ma
- School of Arts and Sciences, Guangzhou Maritime University, Guangzhou 510725, China; (X.L.); (X.M.); (X.L.)
| | - Xingyu Liu
- School of Arts and Sciences, Guangzhou Maritime University, Guangzhou 510725, China; (X.L.); (X.M.); (X.L.)
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jingwei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
6
|
Tameni A, Toffalori C, Vago L. Tricking the trickster: precision medicine approaches to counteract leukemia immune escape after transplant. Blood 2024; 143:2710-2721. [PMID: 38728431 DOI: 10.1182/blood.2023019962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Annalisa Tameni
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Rossari F, Foti S, Camera S, Persano M, Casadei-Gardini A, Rimini M. Treatment options for advanced hepatocellular carcinoma: the potential of biologics. Expert Opin Biol Ther 2024; 24:455-470. [PMID: 38913107 DOI: 10.1080/14712598.2024.2363234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Advanced hepatocellular carcinoma (HCC) represents a significant global health burden, whose treatment has been recently revolutionized by the advent of biologic treatments. Despite that, innovative therapeutic regimens and approaches, especially immune-based, remain to be explored aiming at extending the therapeutic benefits to a wider population of patients. AREAS COVERED This review comprehensively discusses the evolving landscape of biological treatment modalities for advanced HCC, including immune checkpoint inhibitors, antiangiogenic monoclonal antibodies, tumor-targeting monoclonal antibodies either naked or drug-conjugated, therapeutic vaccines, oncolytic viruses, adoptive cell therapies, and cytokine-based therapies. Key clinical trials and preclinical studies are examined, highlighting the actual or potential impact of these interventions in reshaping treatment paradigms for HCC. EXPERT OPINION Tailored and rational combination strategies, leveraging the synergistic effects of different modalities, represent a promising approach to maximize treatment efficacy in advanced HCC, which should aim at conversion endpoints to increase the fraction of patients eligible for curative approaches. The identification of predictive biomarkers holds the key to optimizing patient selection and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
8
|
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, Fournier N, Torchia B, Martinez Bedoya D, Davanture S, Fernández-Vaquero M, Fan C, Janzen J, Mohammadzadeh Y, Genolet R, Mansouri N, Wenes M, Migliorini D, Heikenwalder M, De Palma M. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. NATURE CANCER 2024; 5:240-261. [PMID: 37996514 PMCID: PMC10899110 DOI: 10.1038/s43018-023-00668-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L. Cytokine-armed DCPs differentiated into conventional type-I DCs (cDC1) and suppressed tumor growth, including melanoma and autochthonous liver models, without the need for antigen loading or myeloablative host conditioning. Tumor response involved synergy between IL-12 and FLT3L and was associated with natural killer and T cell infiltration and activation, M1-like macrophage programming and ischemic tumor necrosis. Antitumor immunity was dependent on endogenous cDC1 expansion and interferon-γ signaling but did not require CD8+ T cell cytotoxicity. Cytokine-armed DCPs synergized effectively with anti-GD2 chimeric-antigen receptor (CAR) T cells in eradicating intracranial gliomas in mice, illustrating their potential in combination therapies.
Collapse
Affiliation(s)
- Ali Ghasemi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Luqing Li
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mehdi Hicham
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Suzel Davanture
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yahya Mohammadzadeh
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nahal Mansouri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mathias Wenes
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Denis Migliorini
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Oncology, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Omotesho QA, Escamilla A, Pérez-Ruiz E, Frecha CA, Rueda-Domínguez A, Barragán I. Epigenetic targets to enhance antitumor immune response through the induction of tertiary lymphoid structures. Front Immunol 2024; 15:1348156. [PMID: 38333212 PMCID: PMC10851080 DOI: 10.3389/fimmu.2024.1348156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.
Collapse
Affiliation(s)
- Quadri Ajibola Omotesho
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alejandro Escamilla
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Human Physiology, Human Histology, Pathological Anatomy and Physical Sport Education, University of Malaga, Malaga, Spain
| | - Elisabeth Pérez-Ruiz
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Cecilia A. Frecha
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Civil Hospital, Malaga, Spain
| | - Antonio Rueda-Domínguez
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
| | - Isabel Barragán
- Medical Oncology Service (Group of Translational Research in Cancer Immunotherapy and Epigenetics), Regional and Clinical University Hospitals, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Li W, Chen F, Gao H, Xu Z, Zhou Y, Wang S, Lv Z, Zhang Y, Xu Z, Huo J, Zhao J, Zong Y, Feng W, Shen X, Wu Z, Lu A. Cytokine concentration in peripheral blood of patients with colorectal cancer. Front Immunol 2023; 14:1175513. [PMID: 37063892 PMCID: PMC10098211 DOI: 10.3389/fimmu.2023.1175513] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The role of tumour secretory cytokines and peripheral circulatory cytokines in tumour progression has received increasing attention; however, the role of tumour-related inflammatory cytokines in colorectal cancer (CRC) remains unclear. In this study, the concentrations of various cytokines in the peripheral blood of healthy controls and patients with CRC at different stages were compared. Methods Peripheral blood samples from 4 healthy participants and 22 colorectal cancer patients were examined. Luminex beads were used to evaluate concentration levels of 40 inflammatory cytokines in peripheral blood samples. Results In peripheral blood, compared with healthy controls and early stage (I + II) CRC patients, advanced CRC (III + IV) patients had increased concentrations of mononuclear/macrophage chemotactic-related proteins (CCL7, CCL8, CCL15, CCL2, and MIF), M2 polarization-related factors (IL-1β, IL-4), neutrophil chemotactic and N2 polarization-related cytokines (CXCL2, CXCL5, CXCL6, IL-8), dendritic cells (DCs) chemotactic-related proteins (CCL19, CCL20, and CCL21), Natural killer (NK) cell related cytokines (CXCL9, CXCL10), Th2 cell-related cytokines (CCL1, CCL11, CCL26), CXCL12, IL-2, CCL25, and CCL27, and decreased IFN-γ and CX3CL1 concentrations. The differential upregulation of cytokines in peripheral blood was mainly concentrated in CRC patients with distant metastasis and was related to the size of the primary tumour; however, there was no significant correlation between cytokine levels in peripheral blood and the propensity and mechanism of lymph node metastasis. Discussion Different types of immune cells may share the same chemokine receptors and can co-localise in response to the same chemokines and exert synergistic pro-tumour or anti-tumour functions in the tumour microenvironment. Chemokines and cytokines affect tumour metastasis and prognosis and may be potential targets for treatment.
Collapse
Affiliation(s)
- Wenchang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Gao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shenjie Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohui Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| |
Collapse
|