1
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
2
|
Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res 2021; 177:94-102. [PMID: 34971637 DOI: 10.1016/j.neures.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
While hypothalamic leptin resistance can occur prior to establishment of obesity, clarification is needed as to whether the impaired response to leptin in the reward-related nuclei occurs independently of obesity. To answer this question, we attempted to dissociate the normally coexisting leptin resistance from obesity. We investigated phenotypes of leptin-overexpressing transgenic mice fed for 1 week with 60 % high-fat diet (HFD) (LepTg-HFD1W mice). After 1 week, we observed that LepTg-HFD1W mice weighed as same as wild type (WT) mice fed standard chow diet (CD) for 1 week (WT-CD1W mice). However, compared to WT-CD1W mice, LepTg-HFD1W mice exhibited attenuated leptin-induced anorexia, decreased leptin-induced c-fos immunostaining in nucleus accumbens (NAc), one of important site of reward system, decreased leptin-stimulated pSTAT3 immunostaining in hypothalamus. Furthermore, neither sucrose nor lipid preference was suppressed by leptin in LepTg-HFD1W mice. On the contrary, leptin significantly suppressed both preferences in WT mice fed HFD (WT-HFD1 W mice). These results indicate that leptin responsiveness decreases in NAc independently of obesity. Additionally, in this situation, suppressive effect of leptin on the hedonic feeding results in impaired regulation. Such findings suggest the impaired leptin responsiveness in NAc partially contributes to dysregulated hedonic feeding behavior independently of obesity.
Collapse
Affiliation(s)
- Hidenari Nomura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Cheol Son
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Shimizu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Social and Behavioral Medicine, Division of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Miyazawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
4
|
Ren JN, Yin KJ, Fan G, Li X, Zhao L, Li Z, Zhang LL, Xie DY, Yuan F, Pan SY. Effect of short-term intake of four sweeteners on feed intake, solution consumption and neurotransmitters release on mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2227-2236. [PMID: 33967319 PMCID: PMC8076381 DOI: 10.1007/s13197-020-04733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
This study focused on the effect of short-term intake of sweeteners on feed intake, solution consumption and neurotransmitters release on mice. The results showed that the free drinking of 10 mM sucralose solution, 100 mM maltose solution, 3 mM saccharin solution and 3 g/L stevioside solution for 32 days will not affect the normal development of the body weight and feed intake of the mice. The consumption of maltose solution was significantly higher than that of the other sweeteners. The leptin and insulin levels increased significantly after the short-term intake of these four sweeteners. The dopamine (DA) content in the whole brain of the mice increased significantly only in the maltose group. These results indicate that the short-term intake of the preferred concentrations of maltose, stevioside, sucralose and saccharin will not affect the body weight and feed intake of the mice. Mice prefer maltose solution to other sweeteners solutions. The 100 mM maltose solution and 3 mM saccharin solution could result in the oxidative stress on mice after 32 days' short-term intake. Compared with other sweeteners, only sugars that could be broken down into small molecules of glucose might have a positive effect on dopamine levels.
Collapse
Affiliation(s)
- Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Kai-Jing Yin
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing, 102200 China
| | - Zhi Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Ding-Yuan Xie
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Fang Yuan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| |
Collapse
|
5
|
Dore R, Krotenko R, Reising JP, Murru L, Sundaram SM, Di Spiezio A, Müller-Fielitz H, Schwaninger M, Jöhren O, Mittag J, Passafaro M, Shanabrough M, Horvath TL, Schulz C, Lehnert H. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology 2020; 45:1645-1655. [PMID: 32353862 PMCID: PMC7419560 DOI: 10.1038/s41386-020-0682-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Homeostatic and hedonic pathways distinctly interact to control food intake. Dysregulations of circuitries controlling hedonic feeding may disrupt homeostatic mechanisms and lead to eating disorders. The anorexigenic peptides nucleobindin-2 (NUCB2)/nesfatin-1 may be involved in the interaction of these pathways. The endogenous levels of this peptide are regulated by the feeding state, with reduced levels following fasting and normalized by refeeding. The fasting state is associated with biochemical and behavioral adaptations ultimately leading to enhanced sensitization of reward circuitries towards food reward. Although NUCB2/nesfatin-1 is expressed in reward-related brain areas, its role in regulating motivation and preference for nutrients has not yet been investigated. We here report that both dopamine and GABA neurons express NUCB2/nesfatin-1 in the VTA. Ex vivo electrophysiological recordings show that nesfatin-1 hyperpolarizes dopamine, but not GABA, neurons of the VTA by inducing an outward potassium current. In vivo, central administration of nesfatin-1 reduces motivation for food reward in a high-effort condition, sucrose intake and preference. We next adopted a 2-bottle choice procedure, whereby the reward value of sucrose was compared with that of a reference stimulus (sucralose + optogenetic stimulation of VTA dopamine neurons) and found that nesfatin-1 fully abolishes the fasting-induced increase in the reward value of sucrose. These findings indicate that nesfatin-1 reduces energy intake by negatively modulating dopaminergic neuron activity and, in turn, hedonic aspects of food intake. Since nesfatin-1´s actions are preserved in conditions of leptin resistance, the present findings render the NUCB2/nesfatin-1 system an appealing target for the development of novel therapeutical treatments towards obesity.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Regina Krotenko
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan Philipp Reising
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4714.60000 0004 1937 0626Present Address: Department of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Luca Murru
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Sivaraj Mohana Sundaram
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Alessandro Di Spiezio
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Department of Biochemistry, University of Kiel, 24118 Kiel, Germany
| | - Helge Müller-Fielitz
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Markus Schwaninger
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Jöhren
- grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Maria Passafaro
- grid.418879.b0000 0004 1758 9800CNR, Institute of Neuroscience, 20129 Milan, Italy
| | - Marya Shanabrough
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Tamas L. Horvath
- grid.47100.320000000419368710Department of Comparative Medicine, Program on Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, H-1078 Hungary
| | - Carla Schulz
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- grid.4562.50000 0001 0057 2672Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
6
|
A Role of Drd2 Hippocampal Neurons in Context-Dependent Food Intake. Neuron 2019; 102:873-886.e5. [DOI: 10.1016/j.neuron.2019.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/16/2018] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
|
7
|
Di Spiezio A, Sandin ES, Dore R, Müller-Fielitz H, Storck SE, Bernau M, Mier W, Oster H, Jöhren O, Pietrzik CU, Lehnert H, Schwaninger M. The LepR-mediated leptin transport across brain barriers controls food reward. Mol Metab 2018; 8:13-22. [PMID: 29254602 PMCID: PMC5985039 DOI: 10.1016/j.molmet.2017.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/26/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Leptin is a key hormone in the control of appetite and body weight. Predominantly produced by white adipose tissue, it acts on the brain to inhibit homeostatic feeding and food reward. Leptin has free access to circumventricular organs, such as the median eminence, but entry into other brain centers is restricted by the blood-brain and blood-CSF barriers. So far, it is unknown for which of its central effects leptin has to penetrate brain barriers. In addition, the mechanisms mediating the transport across barriers are unclear although high expression in brain barriers suggests an important role of the leptin receptor (LepR). METHODS We selectively deleted LepR in brain endothelial and epithelial cells of mice (LepRbeKO). The expression of LepR in fenestrated vessels of the periphery and the median eminence as well as in tanycytes was not affected. RESULTS Perfusion studies showed that leptin uptake by the brain depended on LepR in brain barriers. When being fed with a rewarding high-fat diet LepRbeKO mice gained more body weight than controls. The aggravated obesity of LepRbeKO mice was due to hyperphagia and a higher sensitivity to food reward. CONCLUSIONS The LepR-mediated transport of leptin across brain barriers in endothelial cells lining microvessels and in epithelial cells of the choroid plexus controls food reward but is apparently not involved in homeostatic control of feeding.
Collapse
Affiliation(s)
- Alessandro Di Spiezio
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elvira Sonia Sandin
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Riccardo Dore
- Department of Internal Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Mareike Bernau
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Walter Mier
- Department of Radiochemistry, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Olaf Jöhren
- Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Deutsches Zentrum für Diabetesforschung, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
8
|
Fat-enriched rather than high-fructose diets promote whitening of adipose tissue in a sex-dependent manner. J Nutr Biochem 2017; 49:22-29. [PMID: 28863366 DOI: 10.1016/j.jnutbio.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/25/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a critical regulator of energy metabolism and an effector organ of excessive caloric intake. We studied the effects of high-fructose (HFruD), high-fat (HFD) and mixed high-sucrose and high-fat diet (HFHSD) on adipocyte morphology and biology and consecutive metabolic effects in male and female C57BL/6 mice. Forty male and 40 female mice were randomly assigned to one of four dietary groups and fed for 10 weeks ad libitum. After 10 weeks of feeding, mice were analyzed in regard to glucose metabolism, insulin sensitivity and alteration in adipocyte morphology and function. Weight gain and diminished insulin sensitivity in HFD- and HFHSD-fed mice were accompanied by increased adipocyte size and a shift in size distribution towards larger adipocytes in all mice. The latter effect was also found but less pronounced in HFruD-fed mice, while insulin sensitivity and body weight remained unaffected. In male mice, expansion of white adipocytes along with decreased uncoupling protein 1 (UCP-1) expression and alterations of mitochondrial biogenesis was found after HFD and HFHSD feeding, while in female mice, UCP-1 expression was also reduced in the HFruD dietary group. Diet-induced cellular alterations were less pronounced in female mice. Our data demonstrate that high-fat rather than high fructose consumption drives metabolically disadvantageous alterations of adipocyte differentiation involving whitening and insulin resistance in a sex-dependent manner with most deleterious effects seen upon administration of combined sucrose and fat-enriched diet in male mice.
Collapse
|
9
|
Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM. Identification of a Brainstem Circuit Controlling Feeding. Cell 2017; 170:429-442.e11. [DOI: 10.1016/j.cell.2017.06.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 01/19/2023]
|
10
|
Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiol Behav 2017; 173:188-199. [PMID: 28192132 DOI: 10.1016/j.physbeh.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/18/2017] [Indexed: 01/08/2023]
Abstract
Recent studies suggest that preferences are conditioned by nutritive (sucrose) but not by non-nutritive (sucralose) sweeteners in mice. Here we compared the effectiveness of nutritive and non-nutritive sweeteners to condition flavor preferences in three mouse strains. Isopreferred sucrose and sucralose solutions both conditioned flavor preferences in C57BL/6J (B6) mice but sucrose was more effective, consistent with its post-oral appetition action. Subsequent experiments compared flavor conditioning by fructose, which has no post-oral appetition effect in B6 mice, and a sucralose+saccharin mixture (SS) which is highly preferred to fructose in 24-h choice tests. Both sweeteners conditioned flavor preferences but fructose induced stronger preferences than SS. Training B6 mice to drink a flavored SS solution paired with intragastric fructose infusions did not enhance the SS-conditioned preference. Thus, the post-oral nutritive actions of fructose do not explain the sugar's stronger preference conditioning effect. Training B6 mice to drink a flavored fructose solution containing SS did not reduce the sugar-conditioned preference, indicating that SS does not have an off-taste that attenuates conditioning. Although B6 mice strongly preferred flavored SS to flavored fructose in a direct choice test, they preferred the fructose-paired flavor to the SS-paired flavor when these were presented in water. Fructose conditioned a stronger flavor preference than an isopreferred saccharin solution, indicating that sucralose is not responsible for the limited SS conditioning actions. SS is highly preferred by FVB/NJ and CAST/EiJ inbred mice, yet conditioned only weak flavor preferences. It is unclear why highly or equally preferred non-nutritive sweeteners condition weaker preferences than fructose, when all stimulate the same T1r2/T1r3 sweet receptor. Recent findings support the existence of non-T1r2/T1r3 glucose taste sensors; however, there is no evidence for receptors that respond to fructose but not to non-nutritive sweeteners.
Collapse
|
11
|
Shimizu Y, Son C, Aotani D, Nomura H, Hikida T, Hosoda K, Nakao K. Role of leptin in conditioned place preference to high-fat diet in leptin-deficient ob/ob mice. Neurosci Lett 2017; 640:60-63. [DOI: 10.1016/j.neulet.2017.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022]
|
12
|
A Leptin Analog Locally Produced in the Brain Acts via a Conserved Neural Circuit to Modulate Obesity-Linked Behaviors in Drosophila. Cell Metab 2017; 25:208-217. [PMID: 28076762 PMCID: PMC5235317 DOI: 10.1016/j.cmet.2016.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 11/21/2022]
Abstract
Leptin, a typically adipose-derived "satiety hormone," has a well-established role in weight regulation. Here we describe a functionally conserved model of genetically induced obesity in Drosophila by manipulating the fly leptin analog unpaired 1 (upd1). Unexpectedly, cell-type-specific knockdown reveals upd1 in the brain, not the adipose tissue, mediates obesity-related traits. Disrupting brain-derived upd1 in flies leads to all the hallmarks of mammalian obesity: increased attraction to food cues, increased food intake, and increased weight. These effects are mediated by domeless receptors on neurons expressing Drosophila neuropeptide F, the orexigenic mammalian neuropeptide Y homolog. In vivo two-photon imaging reveals upd1 and domeless inhibit this hedonic signal in fed animals. Manipulations along this central circuit also create hypersensitivity to obesogenic conditions, emphasizing the critical interplay between biological predisposition and environment in overweight and obesity prevalence. We propose adipose- and brain-derived upd/leptin may control differing features of weight regulation through distinct neural circuits.
Collapse
|
13
|
Yoshida R, Noguchi K, Shigemura N, Jyotaki M, Takahashi I, Margolskee RF, Ninomiya Y. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds. Diabetes 2015; 64:3751-62. [PMID: 26116698 PMCID: PMC4876703 DOI: 10.2337/db14-1462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/16/2015] [Indexed: 01/19/2023]
Abstract
Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kenshi Noguchi
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan Section of Orthodontics and Dentofacial Orthopedics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masafumi Jyotaki
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan Division of Sensory Physiology, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Nadiya Kubasova
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Denis Burdakov
- Mill Hill Laboratory, The Francis Crick Institute, London, U.K
| | - Ana I Domingos
- Obesity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
15
|
Yen HH, Roseberry AG. Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats. Psychopharmacology (Berl) 2015; 232:285-94. [PMID: 24985892 DOI: 10.1007/s00213-014-3663-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/11/2014] [Indexed: 01/25/2023]
Abstract
RATIONALE The mesolimbic dopamine system is an important component of the neural circuitry controlling reward-related behavior. We have recently shown that the melanocortin peptides decrease normal homeostatic feeding through actions in the ventral tegmental area. It is unknown, however, whether melanocortin peptides can also act on dopamine pathways to regulate hedonic, reward-related aspects of feeding. OBJECTIVES In these studies, we tested whether injection of melanocortin receptor agonists directly into the ventral tegmental area (VTA) affected the intake of appetizing and rewarding sugar solutions in two-bottle choice tests. METHODS Varying doses of the melanocortin receptor agonist, MTII, were injected into the VTA, and the intake of different sugar solutions was measured in two-bottle choice tests to distinguish between potential effects on homeostatic versus hedonic aspects of feeding. In addition, 24-h food intake was measured throughout the experiments. RESULTS Injection of MTII into the VTA dose dependently decreased the intake of 1 and 2 % sucrose solutions and 0.2 % saccharin solutions and decreased 24-h food intake in each study. Although MTII also decreased the intake of a 10 % sucrose solution, MTII appeared to be less potent in rats exposed to 10 % sucrose, as only the highest dose of MTII tested was effective at reducing 10 % sucrose intake and food intake in these rats. CONCLUSIONS These studies demonstrate that melanocortins can act directly in the VTA to control reward-related feeding. Thus, these studies add to the growing body of evidence showing that melanocortins can interact with the mesolimbic dopamine system to regulate multiple reward-related behaviors.
Collapse
Affiliation(s)
- Haw-Han Yen
- Department of Biology, Georgia State University, 24 Peachtree Center Ave NE, Suite 430SA, Atlanta, GA, 30303, USA
| | | |
Collapse
|
16
|
Farr OM, Tsoukas MA, Mantzoros CS. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 2015; 64:114-30. [PMID: 25092133 DOI: 10.1016/j.metabol.2014.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/16/2014] [Accepted: 07/05/2014] [Indexed: 12/20/2022]
Abstract
Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered.
Collapse
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215.
| | - Michael A Tsoukas
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| | - Christos S Mantzoros
- Division of Endocrinology, Boston VA Healthcare System/Harvard Medical School, Boston, MA 02215
| |
Collapse
|
17
|
García-Cáceres C, Tschöp MH. The emerging neurobiology of calorie addiction. eLife 2014; 3:e01928. [PMID: 24399459 PMCID: PMC3882917 DOI: 10.7554/elife.01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The response of the brain to sugar is determined by specific cell populations in the brain, including neurons that secrete melanin-concentrating hormone, and culminates in the release of dopamine.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Cristina García-Cáceres is at the Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|