1
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. Effect of CB1 Receptor Deficiency on Mitochondrial Quality Control Pathways in Gastrocnemius Muscle. BIOLOGY 2024; 13:116. [PMID: 38392333 PMCID: PMC10886598 DOI: 10.3390/biology13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
2
|
Imperatore R, Cristino L. Assessing CB 1 Expression in the Brain by Immunohistochemical Methods: Light, Confocal, and Electron Microscopy. Methods Mol Biol 2023; 2576:407-424. [PMID: 36152206 DOI: 10.1007/978-1-0716-2728-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional techniques to reveal the neuroanatomical distribution of type 1 cannabinoid receptor (CB1) in the brain, at the cellular and subcellular level, are mainly represented by light, confocal, and electron microscopy. By using immunoperoxidase and immunofluorescence methods, it is possible to reveal CB1 distribution and localization in the brain and its changes under pathological conditions. Moreover, by using electron microscopy, we can define the ultrastructural localization at the level of subcellular structures and organelles. Here, we describe immunoperoxidase, immunofluorescence, and electron microscopy protocols used to get information about CB1 spatial distribution and localization in the brain. Preparation of reagents, resin embedding, preparation for an endogenous activity-blocking step, and background counterstaining and revelation of CB1 by using specific labeled secondary antibodies will be presented. The methods here discussed are highly sensitive and specific multistep processes, where each step is critical to finally obtain an optimum signal.
Collapse
Affiliation(s)
- Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, NA, Italy.
| |
Collapse
|
3
|
Singlár Z, Ganbat N, Szentesi P, Osgonsandag N, Szabó L, Telek A, Fodor J, Dienes B, Gönczi M, Csernoch L, Sztretye M. Genetic Manipulation of CB1 Cannabinoid Receptors Reveals a Role in Maintaining Proper Skeletal Muscle Morphology and Function in Mice. Int J Mol Sci 2022; 23:ijms232415653. [PMID: 36555292 PMCID: PMC9779148 DOI: 10.3390/ijms232415653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoid system (ECS) refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. Cannabinoid receptors (CBRs) are highly expressed in the central nervous system and many peripheral tissues. Evidence suggests that CB1Rs are expressed in human and murine skeletal muscle mainly in the cell membrane, but a subpopulation is present also in the mitochondria. However, very little is known about the latter population. To date, the connection between the function of CB1Rs and the regulation of intracellular Ca2+ signaling has not been investigated yet. Tamoxifen-inducible skeletal muscle-specific conditional CB1 knock-down (skmCB1-KD, hereafter referred to as Cre+/-) mice were used in this study for functional and morphological analysis. After confirming CB1R down-regulation on the mRNA and protein level, we performed in vitro muscle force measurements and found that peak twitch, tetanus, and fatigue were decreased significantly in Cre+/- mice. Resting intracellular calcium concentration, voltage dependence of the calcium transients as well as the activity dependent mitochondrial calcium uptake were essentially unaltered by Cnr1 gene manipulation. Nevertheless, we found striking differences in the ultrastructural architecture of the mitochondrial network of muscle tissue from the Cre+/- mice. Our results suggest a role of CB1Rs in maintaining physiological muscle function and morphology. Targeting ECS could be a potential tool in certain diseases, including muscular dystrophies where increased endocannabinoid levels have already been described.
Collapse
Affiliation(s)
- Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Nyamkhuu Ganbat
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Nomin Osgonsandag
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
| | - Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Cell Physiology Research Group, Eötvös Loránd Research Network (ELKH), 4012 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
4
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
6
|
Echeazarra L, García Del Caño G, Barrondo S, González-Burguera I, Saumell-Esnaola M, Aretxabala X, López de Jesús M, Borrega-Román L, Mato S, Ledent C, Matute C, Goicolea MA, Sallés J. Fit-for-purpose based testing and validation of antibodies to amino- and carboxy-terminal domains of cannabinoid receptor 1. Histochem Cell Biol 2021; 156:479-502. [PMID: 34453219 PMCID: PMC8604870 DOI: 10.1007/s00418-021-02025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Specific and selective anti-CB1 antibodies are among the most powerful research tools to unravel the complex biological processes mediated by the CB1 receptor in both physiological and pathological conditions. However, low performance of antibodies remains a major source of inconsistency between results from different laboratories. Using a variety of techniques, including some of the most commonly accepted ones for antibody specificity testing, we identified three of five commercial antibodies against different regions of CB1 receptor as the best choice for specific end-use purposes. Specifically, an antibody against a long fragment of the extracellular amino tail of CB1 receptor (but not one against a short sequence of the extreme amino-terminus) detected strong surface staining when applied to live cells, whereas two different antibodies against an identical fragment of the extreme carboxy-terminus of CB1 receptor (but not one against an upstream peptide) showed acceptable performance on all platforms, although they behaved differently in immunohistochemical assays depending on the tissue fixation procedure used and showed different specificity in Western blot assays, which made each of them particularly suitable for one of those techniques. Our results provide a framework to interpret past and future results derived from the use of different anti-CB1 antibodies in the context of current knowledge about the CB1 receptor at the molecular level, and highlight the need for an adequate validation for specific purposes, not only before antibodies are placed on the market, but also before the decision to discontinue them is made.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Dispositivos Móviles para el Control de Enfermedades Crónicas, 01008, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Román
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Susana Mato
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Multiple Sclerosis and Other Demyelinating Diseases Unit, Biocruces Bizkaia, Barakaldo, Spain
| | | | - Carlos Matute
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Fyke W, Premoli M, Echeverry Alzate V, López-Moreno JA, Lemaire-Mayo V, Crusio WE, Marsicano G, Wöhr M, Pietropaolo S. Communication and social interaction in the cannabinoid-type 1 receptor null mouse: Implications for autism spectrum disorder. Autism Res 2021; 14:1854-1872. [PMID: 34173729 DOI: 10.1002/aur.2562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Clinical and preclinical findings have suggested a role of the endocannabinoid system (ECS) in the etiopathology of autism spectrum disorder (ASD). Previous mouse studies have investigated the role of ECS in several behavioral domains; however, none of them has performed an extensive assessment of social and communication behaviors, that is, the main core features of ASD. This study employed a mouse line lacking the primary endocannabinoid receptor (CB1r) and characterized ultrasonic communication and social interaction in CB1-/- , CB1+/- , and CB1+/+ males and females. Quantitative and qualitative alterations in ultrasonic vocalizations (USVs) were observed in CB1 null mice both during early development (i.e., between postnatal days 4 and 10), and at adulthood (i.e., at 3 months of age). Adult mutants also showed marked deficits in social interest in the three-chamber test and social investigation in the direct social interaction test. These behavioral alterations were mostly observed in both sexes and appeared more marked in CB1-/- than CB1+/- mutant mice. Importantly, the adult USV alterations could not be attributed to differences in anxiety or sensorimotor abilities, as assessed by the elevated plus maze and auditory startle tests. Our findings demonstrate the role of CB1r in social communication and behavior, supporting the use of the CB1 full knockout mouse in preclinical research on these ASD-relevant core domains. LAY SUMMARY: The endocannabinoid system (ECS) is important for brain development and neural function and is therefore likely to be involved in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Here we investigated changes in social behavior and communication, which are core features of ASD, in male and female mice lacking the chief receptor of this system. Our results show that loss of this receptor results in several changes in social behavior and communication both during early development and in adulthood, thus supporting the role of the ECS in these ASD-core behavioral domains.
Collapse
Affiliation(s)
- William Fyke
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Victor Echeverry Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain.,Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, Spain
| | - José A López-Moreno
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain
| | | | - Wim E Crusio
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Markus Wöhr
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven, Belgium.,KU Leuven, Leuven Brain Institute, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| | | |
Collapse
|
8
|
Robledo-Menendez A, Vella M, Grandes P, Soria-Gomez E. Cannabinoid control of hippocampal functions: the where matters. FEBS J 2021; 289:2162-2175. [PMID: 33977665 DOI: 10.1111/febs.15907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
In the brain, hippocampal circuits are crucial for cognitive performance (e.g., memory) and deeply affected in pathological conditions (e.g., epilepsy, Alzheimer). Specialized molecular mechanisms regulate different cell types underlying hippocampal circuitries functions. Among them, cannabinoid receptors exhibit various roles depending on the cell type (e.g., neuron, glial cell) or subcellular organelle (e.g., mitochondria). Determining the site of action and precise mechanisms triggered by cannabinoid receptor activation at a local cellular and subcellular level helps us understand hippocampal pathophysiological states. In doing so, past and current research have advanced our knowledge of cannabinoid functions and proposed novel routes for potential therapeutics. By outlining these data in this work, we aim to showcase current findings and highlight the pathophysiological impact of the cannabinoid receptor type 1 (CB1) localization/activation in hippocampal circuits.
Collapse
Affiliation(s)
- Almudena Robledo-Menendez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Maria Vella
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Edgar Soria-Gomez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Egaña-Huguet J, Bonilla-Del Río I, Gómez-Urquijo SM, Mimenza A, Saumell-Esnaola M, Borrega-Roman L, García Del Caño G, Sallés J, Puente N, Gerrikagoitia I, Elezgarai I, Grandes P. The Absence of the Transient Receptor Potential Vanilloid 1 Directly Impacts on the Expression and Localization of the Endocannabinoid System in the Mouse Hippocampus. Front Neuroanat 2021; 15:645940. [PMID: 33692673 PMCID: PMC7937815 DOI: 10.3389/fnana.2021.645940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.
Collapse
Affiliation(s)
- Jon Egaña-Huguet
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Roman
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
10
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
11
|
Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci 2018. [PMID: 29533978 PMCID: PMC5877694 DOI: 10.3390/ijms19030833] [Citation(s) in RCA: 803] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.
Collapse
|
12
|
Gutiérrez-Rodríguez A, Bonilla-Del Río I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Elezgarai I, Ruehle S, Lutz B, Robin LM, Soria-Gómez E, Bellocchio L, Padwal JD, van der Stelt M, Mendizabal-Zubiaga J, Reguero L, Ramos A, Gerrikagoitia I, Marsicano G, Grandes P. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 2018; 66:1417-1431. [PMID: 29480581 DOI: 10.1002/glia.23314] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/07/2022]
Abstract
Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.
Collapse
Affiliation(s)
- Ana Gutiérrez-Rodríguez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sabine Ruehle
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Laurie M Robin
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Luigi Bellocchio
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Jalindar D Padwal
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
13
|
Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. Br J Pharmacol 2017; 175:4026-4035. [PMID: 28872669 DOI: 10.1111/bph.14023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Melser S, Pagano Zottola AC, Serrat R, Puente N, Grandes P, Marsicano G, Hebert-Chatelain E. Functional Analysis of Mitochondrial CB1 Cannabinoid Receptors (mtCB1) in the Brain. Methods Enzymol 2017; 593:143-174. [PMID: 28750801 DOI: 10.1016/bs.mie.2017.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence indicates that, besides its canonical localization at cell plasma membranes, the type-1 cannabinoid receptor, CB1 is functionally present at brain and muscle mitochondrial membranes (mtCB1). Through mtCB1 receptors, cannabinoids can directly regulate intramitochondrial signaling and respiration. This new and surprising discovery paves the way to new potential fields of research, dealing with the direct impact of G protein-coupled receptors on bioenergetic processes and its functional implications. In this chapter, we summarize some key experimental approaches established in our laboratories to identify anatomical, biochemical, and functional features of mtCB1 receptors in the brain. In particular, we describe the procedures to obtain reliable and controlled detection of mtCB1 receptors by immunogold electromicroscopy and by immunoblotting methods. Then, we address the study of direct cannabinoid effects on the electron transport system and oxidative phosphorylation. Finally, we present a functional example of the impact of mtCB1 receptors on mitochondrial mobility in cultured neurons. Considering the youth of the field, these methodological approaches will very likely be improved and refined in the future, but this chapter aims at presenting the methods that are currently used and, in particular, at underlining the need of rigorous controls to obtain reliable results. We hope that this chapter might help scientists becoming interested in this new and exciting field of research.
Collapse
Affiliation(s)
- Su Melser
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Antonio C Pagano Zottola
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Roman Serrat
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Nagore Puente
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Pedro Grandes
- Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain; University of Victoria, Victoria, BC, Canada
| | - Giovanni Marsicano
- INSERM U1215, NeuroCentre Magendie, Team "Endocannabinoids and Neuroadaptation", Bordeaux, France; Université de Bordeaux, Bordeaux, France.
| | | |
Collapse
|
15
|
Cristino L, Imperatore R, Di Marzo V. Techniques for the Cellular and Subcellular Localization of Endocannabinoid Receptors and Enzymes in the Mammalian Brain. Methods Enzymol 2017; 593:61-98. [PMID: 28750816 DOI: 10.1016/bs.mie.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Mendizabal-Zubiaga J, Melser S, Bénard G, Ramos A, Reguero L, Arrabal S, Elezgarai I, Gerrikagoitia I, Suarez J, Rodríguez De Fonseca F, Puente N, Marsicano G, Grandes P. Cannabinoid CB 1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration. Front Physiol 2016; 7:476. [PMID: 27826249 PMCID: PMC5078489 DOI: 10.3389/fphys.2016.00476] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
The cannabinoid type 1 (CB1) receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1), where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis) and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahydrocannabinol (Δ9-THC) concentrations (100 nM or 200 nM) was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12 and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA) cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant difference was observed in the Sdha and Cox4i1 expression, between CB1-WT and CB1-KO. In conclusion, CB1 receptors in skeletal and myocardial muscles are predominantly localized in mitochondria. The activation of mtCB1 receptors may participate in the mitochondrial regulation of the oxidative activity probably through the relevant enzymes implicated in the pyruvate metabolism, a main substrate for TCA activity.
Collapse
Affiliation(s)
- Juan Mendizabal-Zubiaga
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Su Melser
- Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Institut National de La Santé et de La Recherche Médicale, U81215Bordeaux, France; Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Université de BordeauxBordeaux, France
| | - Giovanni Bénard
- Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Institut National de La Santé et de La Recherche Médicale, U81215Bordeaux, France; Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Université de BordeauxBordeaux, France
| | - Almudena Ramos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Sergio Arrabal
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Juan Suarez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Fernando Rodríguez De Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga Málaga, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain
| | - Giovanni Marsicano
- Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Institut National de La Santé et de La Recherche Médicale, U81215Bordeaux, France; Group "Endocannabinoids and Neuroadaptation," NeuroCentre Magendie, Université de BordeauxBordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque CountryLeioa, Spain; Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology ParkZamudio, Spain; Division of Medical Sciences, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
17
|
Gutiérrez-Rodríguez A, Puente N, Elezgarai I, Ruehle S, Lutz B, Reguero L, Gerrikagoitia I, Marsicano G, Grandes P. Anatomical characterization of the cannabinoid CB 1 receptor in cell-type-specific mutant mouse rescue models. J Comp Neurol 2016; 525:302-318. [PMID: 27339436 DOI: 10.1002/cne.24066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribution of hippocampal CB1 receptors of rescue mice that express the gene exclusively in dorsal telencephalic glutamatergic neurons (Glu-CB1 -RS) or GABAergic neurons (GABA-CB1 -RS) was studied by immunoelectron microscopy. Results were compared with conditional CB1 receptor knockout lines. As expected, CB1 immunoparticles appeared at presynaptic plasmalemma, making asymmetric and symmetric synapses. In the hippocampal CA1 stratum radiatum, the values of the CB1 receptor-immunopositive excitatory and inhibitory synapses were Glu-CB1 -RS, 21.89% (glutamatergic terminals); 2.38% (GABAergic terminals); GABA-CB1 -RS, 1.92% (glutamatergic terminals); 77.92% (GABAergic terminals). The proportion of CB1 receptor-immunopositive excitatory and inhibitory synapses in the inner one-third of the dentate molecular layer was Glu-CB1 -RS, 53.19% (glutamatergic terminals); 2.30% (GABAergic terminals); GABA-CB1 -RS, 3.19% (glutamatergic terminals); 85.07% (GABAergic terminals). Taken together, Glu-CB1 -RS and GABA-CB1 -RS mice show the usual CB1 receptor distribution and expression in hippocampal cell types with specific rescue of the receptor, thus being ideal for in-depth anatomical and functional investigations of the endocannabinoid system. J. Comp. Neurol. 525:302-318, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Gutiérrez-Rodríguez
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain.,Université de Bordeaux, Bordeaux, F-33076, France
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain
| | - Sabine Ruehle
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.,Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Leire Reguero
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain
| | - Giovanni Marsicano
- Université de Bordeaux, Bordeaux, F-33076, France.,INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, 33077, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170, Zamudio, Spain.,Division of Medical Sciences, University of Victoria, Victoria, V8P 5C2, British Columbia, Canada
| |
Collapse
|
18
|
Abstract
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Collapse
|
19
|
Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle. PLoS One 2015; 10:e0145244. [PMID: 26671069 PMCID: PMC4682857 DOI: 10.1371/journal.pone.0145244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023] Open
Abstract
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.
Collapse
|
20
|
Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 2015; 519:45-50. [PMID: 25707796 DOI: 10.1038/nature14260] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.
Collapse
|
21
|
Fišar Z, Singh N, Hroudová J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol Lett 2014; 231:62-71. [PMID: 25195527 DOI: 10.1016/j.toxlet.2014.09.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/31/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| | - Namrata Singh
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, Prague 2 120 00, Czech Republic.
| |
Collapse
|