1
|
Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01114-y. [PMID: 40247011 DOI: 10.1038/s41574-025-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Insulin resistance is an integral pathophysiological feature of type 2 diabetes mellitus. Here, we review established and emerging cellular mechanisms of insulin resistance, their complex integrative features and their relevance to disease progression. While recognizing the heterogeneity of the elusive fundamental disruptions that cause insulin resistance, we endorse the view that effector mechanisms impinge on insulin receptor signalling and its relationship with plasma levels of insulin. We focus on hyperinsulinaemia and its consequences: acutely impaired but persistent insulin action, with reduced ability to lower glucose levels but preserved lipid synthesis and lipoprotein secretion. We emphasize the role of insulin sensitization as a therapeutic goal in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Zhaobing Deng
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Qingli Liu
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
2
|
Ybarra M, Martínez-Santos M, Oltra M, Muriach M, Pires ME, Ceresoni C, Sancho-Pelluz J, Barcia JM. miR-205-5p Modulates High Glucose-Induced VEGFA Levels in Diabetic Mice and ARPE-19 Cells. Antioxidants (Basel) 2025; 14:218. [PMID: 40002404 PMCID: PMC11851844 DOI: 10.3390/antiox14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
High glucose levels may cause vascular alterations in patients with diabetes, which can lead to complications such as diabetic retinopathy-an abnormal growth of retinal blood vessels. The micro-RNA miR-205-5p is known to regulate angiogenesis by modulating the expression of the vascular endothelial growth factor (VEGFA) in different systems. This study investigates the role of miR-205-5p in controlling VEGFA expression both in vitro and in the eye under hyperglycemic conditions. An alloxan-induced diabetic mouse model and retinal pigment epithelium human cell line (ARPE-19) were exposed to high glucose and treated with an ectopic miR-205-5p mimic. VEGFA mRNA and protein levels were assessed using qRT-PCR, Western blot, and immunocytochemistry. Additionally, human umbilical vein endothelial cells (HUVECs) were employed to evaluate angiogenesis. Our results show that high glucose significantly reduced miR-205-5p levels while upregulating VEGFA expression in both ARPE-19 cells and diabetic mice. The ectopic administration of miR-205-5p (via transfection or intravitreal injection) restored VEGFA levels and inhibited angiogenesis in HUVEC cultures. Based on these preliminary data, we suggest a potential therapeutic strategy against VEGFA involving miR-205-5p in proliferative eye-related vascular disorders.
Collapse
Affiliation(s)
- María Ybarra
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Miriam Martínez-Santos
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Maria Oltra
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Muriach
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad Jaime I, Avda. Vicent Sos Baynat, 12006 Castellón de la Plana, Spain;
| | - Maria E. Pires
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Chiara Ceresoni
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Javier Sancho-Pelluz
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Jorge M. Barcia
- Escuela de Doctorado Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Y.); (M.M.-S.); (M.E.P.); (C.C.); (J.M.B.)
- Departamento de Anatomía y Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
3
|
Nunes S, Bastos R, Marinho AI, Vieira R, Benício I, de Noronha MA, Lírio S, Brodskyn C, Tavares NM. Recent advances in the development and clinical application of miRNAs in infectious diseases. Noncoding RNA Res 2025; 10:41-54. [PMID: 39296638 PMCID: PMC11406675 DOI: 10.1016/j.ncrna.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
In the search for new biomarkers and therapeutic targets for infectious diseases, several molecules have been investigated. Small RNAs, known as microRNAs (miRs), are important regulators of gene expression, and have emerged as promising candidates for these purposes. MiRs are a class of small, endogenous non-coding RNAs that play critical roles in several human diseases, including host-pathogen interaction mechanisms. Recently, miRs signatures have been reported in different infectious diseases, opening new perspectives for molecular diagnosis and therapy. MiR profiles can discriminate between healthy individuals and patients, as well as distinguish different disease stages. Furthermore, the possibility of assessing miRs in biological fluids, such as serum and whole blood, renders these molecules feasible for the development of new non-invasive diagnostic and prognostic tools. In this manuscript, we will comprehensively describe miRs as biomarkers and therapeutic targets in infectious diseases and explore how they can contribute to the advance of existing and new tools. Additionally, we will discuss different miR analysis platforms to understand the obstacles and advances of this molecular approach and propose their potential clinical applications and contributions to public health.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Rana Bastos
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ananda Isis Marinho
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Raissa Vieira
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Ingra Benício
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | - Sofia Lírio
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Cláudia Brodskyn
- Federal University of Bahia (UFBA), Salvador, Brazil
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| | - Natalia Machado Tavares
- Laboratory of Medicine and Precision Public Health (MeSP), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia (INCT) Iii - Instituto de Investigação Em Imunologia, São Paulo, Brazil
| |
Collapse
|
4
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
5
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
6
|
Xiang Y, Sun M, Wu Y, Hu Y. MiR-205-5p-Mediated MAGI1 Inhibition Attenuates the Injury Induced by Diabetic Nephropathy. Pharmacology 2024; 109:98-109. [PMID: 38325349 DOI: 10.1159/000535670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.
Collapse
Affiliation(s)
- Yuanbing Xiang
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Min Sun
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yuxi Wu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yao Hu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
7
|
Huang X, Li Z, Zhang L, Yang Y, Wang Y, Li S, Li G, Feng H, Yang X. miR-205-5p inhibits homocysteine-induced pulmonary microvascular endothelium dysfunction by targeting FOXO1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1456-1466. [PMID: 37491880 PMCID: PMC10520487 DOI: 10.3724/abbs.2023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/31/2023] [Indexed: 07/27/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for multiple chronic diseases, and vascular endothelial cell injury has been regarded as the initiating step for this process. miRNAs are involved in Hcy-induced endothelial dysfunction, while the underlying mechanism and roles of miRNAs in pulmonary endothelial dysfunction induced by homocysteine are unknown. Here, we find that miR-205-5p alleviates pulmonary endothelial dysfunction by targeting FOXO1 in CBS +/‒ mice to protect against Hcy-induced pulmonary endothelial dysfunction. Mechanistically, we show that Hcy can lead to DNA hypermethylation of the miR-205-5p promoter due to the increased binding of DNMT1 to its promoter, which contributes to reduction of miR-205-5p expression. In summary, miR-205-5p promoter hypermethylation causes downregulation of miR-205-5p expression, resulting in a reduction in miR-205-5p binding to FOXO1 during homocysteine-induced pulmonary endothelial dysfunction. Our data indicate that miR-205-5p may be a potential therapeutic target against Hcy-induced pulmonary injury.
Collapse
Affiliation(s)
- Xiaobo Huang
- Department of Respiratory and Critical Care MedicineSecond Affiliated Hospital of Ningxia Medical University (The First People′s Hospital of Yinchuan)Yinchuan750001China
| | - Zhen Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| | - Ling Zhang
- Department of PathologyPeople’s Hospital of Ningxia Hui Autonomous RegionYinchuan750004China
| | - Yali Yang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Yanjia Wang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Sirui Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | - Guizhong Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
| | | | - Xiaoling Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuan750004China
- School of Basic Medical SciencesNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
8
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
9
|
Xia J, Sun W, Dun J. LncRNA 1500026H17Rik knockdown ameliorates high glucose-induced mouse podocyte injuries through the miR-205-5p/EGR1 pathway. Int Urol Nephrol 2023; 55:1045-1057. [PMID: 36306049 DOI: 10.1007/s11255-022-03396-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Podocyte injuries and dysfunctions contribute to the development of diabetic nephropathy (DN). This study aimed to investigate the role and novel mechanism of lncRNA 1500026H17Rik in high glucose (HG)-treated podocytes. METHODS DN mice were induced by streptozotocin, and DN in vitro models were constructed in mouse podocytes treated with HG. The expression of fibrosis-related proteins and early growth response protein 1 (EGR1) was detected by western blot. The expression of 1500026H17Rik, miR-205-5p and EGR1 mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell apoptosis was monitored by flow cytometry assay. Oxidative stress was assessed according to the levels of superoxide dismutase (SOD), malondialdehyde (MDA) and reactive oxygen species (ROS). Inflammatory response was assessed according to the releases of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The target relationship between miR-205-5p and 1500026H17Rik or EGR1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. RESULTS 1500026H17Rik was upregulated in DN mice and HG-induced podocytes. 1500026H17Rik knockdown alleviated podocyte apoptosis, fibrosis, oxidative stress and inflammation induced by HG. MiR-205-5p was a target of 1500026H17Rik, and EGR1 was a downstream target of miR-205-5p. Rescue experiments presented that miR-205-5p inhibition reversed the effects of 1500026H17Rik knockdown. Moreover, miR-205-5p restoration also ameliorated HG-induced cell injuries, which were overturned by EGR1 overexpression. In addition, EGR1 overexpression recovered podocyte apoptosis, fibrosis, oxidative stress and inflammation weakened by 1500026H17Rik knockdown. CONCLUSION 1500026H17Rik knockdown alleviated HG-induced podocyte injuries, including apoptosis, fibrosis, oxidative stress and inflammation, by governing the miR-205-5p/EGR1 pathway, thus involving in DN development.
Collapse
Affiliation(s)
- Jinjin Xia
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, No. 253 Industrial Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Weigang Sun
- Department of Nephrology, Tianshui First People's Hospital, Tianshui, Gansu, China
| | - Jingjing Dun
- Medical School of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Khan I, Lu Y, Li N, Shi H, Ding L, Hong M, Fang Z. Effect of ammonia stress on AMPK regulating-carbohydrate and lipid metabolism in Chinese striped-neck turtle (Mauremys sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109491. [PMID: 36257571 DOI: 10.1016/j.cbpc.2022.109491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
In aquatic organisms, ammonia is one of the major factors that affect energy levels when it exceeds its optimal concentration. Numerous studies have examined the effects of ammonia on aquatic animals, but its effect on metabolism is still unknown. The effect of ammonia on carbohydrates and lipid metabolism in the Chinese striped neck turtle (Mauremys sinensis) was investigated in this study by exposing the turtle to two different ammonia concentrations (A100: 1.53 mg L-1) and (A200: 2.98 mg L-1) for 24 and 48 h, respectively. Our results showed that the mRNA expression of adenosine monophosphate-activated protein kinase α1 (AMPKα1) significantly increased only in A100 at 24 h, whereas its activity increased in both ammonia-exposed groups. The two AMPK-regulated transcription factors responsible for carbohydrate metabolism also exhibited changes in ammonia-treated groups, as hepatocyte nuclear factor-4-alpha (HNF4α) increased and forkhead box protein O1 (FoxO1) decreased. The expression of phosphofructokinase (PFK) and glucose-6-phosphatase (G-6-PAS) was subsequently downregulated. In addition, transcription factors, carbohydrate-responsive element-binding protein (ChREBP), and sterol regulatory element-binding protein 1c (SREBP-1c), which are known to be involved in lipogenesis, were suppressed. These downstream genes include fatty acid synthase, stearoyl CoA desaturase, and acetyl-CoA carboxylase (FAS, SCD-1 and ACC). Moreover, the glucose content decreased, whereas the triglyceride content increased significantly in A200 at 24 h. We concluded that AMPK signaling inhibits gluconeogenesis and lipogenesis, and promotes glycolysis to meet energy demand under stressful conditions in M. sinensis.
Collapse
Affiliation(s)
- Ijaz Khan
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Yingnan Lu
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Meiling Hong
- Key Laboratory of Tropical Island Ecology, Ministry of Education, Hainan key Laboratory of Tropical Animal and Plant Ecology, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou 570216, China.
| |
Collapse
|
11
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
12
|
Qian G, Morral N. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Hum Mol Genet 2022; 31:R4-R21. [PMID: 35417923 DOI: 10.1093/hmg/ddac088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity and type 2 diabetes are major contributors to the growing prevalence of non-alcoholic fatty liver disease (NAFLD), a chronic liver condition characterized by the accumulation of fat in individuals without a significant amount of alcohol intake. The NAFLD spectrum ranges from simple steatosis (early stages, known as NAFL) to non-alcoholic steatohepatitis, which can progress to fibrosis and cirrhosis or hepatocellular carcinoma. Obesity, type 2 diabetes and NAFLD are strongly associated with insulin resistance. In the liver, insulin resistance increases hepatic glucose output, lipogenesis and very-low-density lipoprotein secretion, leading to a combination of hyperglycemia and hypertriglyceridemia. Aberrant gene expression is a hallmark of insulin resistance. Non-coding RNAs (ncRNAs) have emerged as prominent regulators of gene expression that operate at the transcriptional, post-transcriptional and post-translational levels. In the last couple of decades, a wealth of studies have provided evidence that most processes of liver metabolism are orchestrated by ncRNAs. This review focuses on the role of microRNAs, long non-coding RNAs and circular RNAs as coordinators of hepatic function, as well as the current understanding on how their dysregulation contributes to abnormal metabolism and pathophysiology in animal models of insulin resistance and NAFLD. Moreover, ncRNAs are emerging as useful biomarkers that may be able to discriminate between the different stages of NAFLD. The potential of ncRNAs as therapeutic drugs for NAFLD treatment and as biomarkers is discussed.
Collapse
Affiliation(s)
- Gene Qian
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
MicroRNA-185 modulates CYP7A1 mediated cholesterol-bile acid metabolism through post-transcriptional and post-translational regulation of FoxO1. Atherosclerosis 2022; 348:56-67. [DOI: 10.1016/j.atherosclerosis.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
14
|
Quintanilha BJ, Chaves DF, Brasili E, Corrêa TA, Capetini VC, Ferreira FM, Castro IA, Hassimotto NM, Rogero MM, Lajolo FM. Ingestion of orange juice prevents hyperglycemia and increases plasma miR-375 expression. Clin Nutr ESPEN 2022; 47:240-245. [DOI: 10.1016/j.clnesp.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
|
15
|
Izquierdo MC, Shanmugarajah N, Lee SX, Kraakman MJ, Westerterp M, Kitamoto T, Harris M, Cook JR, Gusarova GA, Zhong K, Marbuary E, O-Sullivan I, Rasmus NF, Camastra S, Unterman TG, Ferrannini E, Hurwitz BE, Haeusler RA. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. J Clin Invest 2022; 132:146219. [PMID: 35104242 PMCID: PMC8970673 DOI: 10.1172/jci146219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.
Collapse
Affiliation(s)
- María Concepción Izquierdo
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Niroshan Shanmugarajah
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Samuel X Lee
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael J Kraakman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Marit Westerterp
- Department of Pediatrics, University of Groningen, Groningen, Netherlands
| | - Takumi Kitamoto
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Michael Harris
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Joshua R Cook
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Galina A Gusarova
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Kendra Zhong
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Elijah Marbuary
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - InSug O-Sullivan
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Nikolaus F Rasmus
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Terry G Unterman
- Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ele Ferrannini
- Department of Internal Medicine, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Barry E Hurwitz
- Department of Psychology, University of Miami, Miami, United States of America
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, United States of America
| |
Collapse
|
16
|
Zmyslowska A, Smyczynska U, Stanczak M, Jeziorny K, Szadkowska A, Fendler W, Borowiec M. Association of circulating miRNAS in patients with Alstrőm and Bardet-Biedl syndromes with clinical course parameters. Front Endocrinol (Lausanne) 2022; 13:1057056. [PMID: 36506055 PMCID: PMC9732093 DOI: 10.3389/fendo.2022.1057056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Patients with the rare syndromic forms of monogenic diabetes: Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS) have multiple metabolic abnormalities, including early-onset obesity, insulin resistance, lipid disorders and type 2 diabetes mellitus. The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age. METHODS We quantified miRNA expression (Qiagen, Germany) in four groups of patients: with ALMS (n=13), with BBS (n=7), patients with obesity (n=19) and controls (n=23). Clinical parameters including lipids profile, serum creatinine, cystatin C, fasting glucose, insulin and C-peptide levels, HbA1c values and insulin resistance (HOMA-IR) were assessed in patients with ALMS and BBS. RESULTS We observed multiple up- or downregulated miRNAs in both ALMS and BBS patients compared to obese patients and controls, but only 1 miRNA (miR-301a-3p) differed significantly and in the same direction in ALMS and BBS relative to the other groups. Similarly, 1 miRNA (miR-92b-3p) was dysregulated in the opposite directions in ALMS and BBS patients, but diverged from 2 other groups. We found eight miRNAs (miR-30a-5p, miR-92b-3p, miR-99a-5p, miR-122-5p, miR-192-5p, miR-193a-5p, miR-199a-3p and miR-205-5p) that significantly correlated with at least of the analyzed clinical variables representing an association with the course of the diseases. CONCLUSIONS Our results show for the first time that serum miRNAs can be used as available indicators of disease course in patients with ALMS and BBS syndromes.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
- *Correspondence: Agnieszka Zmyslowska,
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Jeziorny
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Gan L, Huang S, Hu Y, Zhang J, Wang X. Heat treatment reduced the expression of miR-7-5p to facilitate insulin-stimulated lactate secretion by targeting IRS2 in boar Sertoli cells. Theriogenology 2021; 180:161-170. [PMID: 34973648 DOI: 10.1016/j.theriogenology.2021.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 12/26/2022]
Abstract
Insulin dysfunction of diabetes mellitus (DM) disorders the glucose metabolism in Sertoli cells (SCs), resulting in the impairment of spermatogenesis.Insulin signaling system in Sertoli cells (SCs) plays an important role in regulating lactate secretion. Heat treatment could increase the lactate secretion of boar SCs, but whether heat treatment participates in lactate secretion by improving the sensitivity of insulin is unknown. In the current study, the primary SCs from 21-day-old boar were employed to treat with 100 nM insulin for 24 h or heat treatment (43 °C, 30 min). Heat treatment strengthened the effect of insulin on the effect of lactate secretion. In addition, heat treatment increased the expression of insulin-induced insulin receptor substrate 2 (IRS2), but reduced the expression of miR-7-5p. Using dual luciferase reporter assay and Western blot, the study found that IRS2 is a potential target gene of miR-7-5p. Heat treatment also enhanced the Phosphorylation of insulin-stimulated PI3K/Akt, and increased lactate secretion by promoting the expression of Glucose Transporter 3 (GLUT3), Lactate Dehydrogenase-A (LDHA) and monocarboxylate transporter 1 (MCT1). Furthermore, miR-7-5p inhibitor could partly mimic the effects of heat treatment on lactate production of SCs, indicating that heat treatment improves insulin sensitivity by regulating the expression of miR-7-5p/IRS2/PI3K/Akt. These results reveal a novel miRNA-mediated mechanism of heat treatment on the regulation of lactate metabolism production, and suggest that targeting miR-7-5p is a probably therapeutic method to insulin dysfunction-induced metabolic diseases.
Collapse
Affiliation(s)
- Lu Gan
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Sha Huang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - JiaoJiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - XianZhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
18
|
Ouni M, Gottmann P, Westholm E, Schwerbel K, Jähnert M, Stadion M, Rittig K, Vogel H, Schürmann A. MiR-205 is up-regulated in islets of diabetes-susceptible mice and targets the diabetes gene Tcf7l2. Acta Physiol (Oxf) 2021; 232:e13693. [PMID: 34028994 DOI: 10.1111/apha.13693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
AIM MicroRNAs play an important role in the maintenance of cellular functions by fine-tuning gene expression levels. The aim of the current study was to identify genetically caused changes in microRNA expression which associate with islet dysfunction in diabetic mice. METHODS To identify novel microRNAs involved in islet dysfunction, transcriptome and miRNome analyses were performed in islets of obese, diabetes-susceptible NZO and diabetes-resistant B6-ob/ob mice and results combined with quantitative trait loci (QTL) and functional in vitro analysis. RESULTS In islets of NZO and B6-ob/ob mice, 94 differentially expressed microRNAs were detected, of which 11 are located in diabetes QTL. Focusing on conserved microRNAs exhibiting the strongest expression difference and which have not been linked to islet function, miR-205-5p was selected for further analysis. According to transcriptome data and target prediction analyses, miR-205-5p affects genes involved in Wnt and calcium signalling as well as insulin secretion. Over-expression of miR-205-5p in the insulinoma cell line INS-1 increased insulin expression, left-shifted the glucose-dependence of insulin secretion and supressed the expression of the diabetes gene TCF7L2. The interaction between miR-205-5p and TCF7L2 was confirmed by luciferase reporter assay. CONCLUSION MiR-205-5p was identified as relevant microRNA involved in islet dysfunction by interacting with TCF7L2.
Collapse
Affiliation(s)
- Meriem Ouni
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Pascal Gottmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Efraim Westholm
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Unit of Islet Cell Exocytosis Department of Clinical Sciences Malmö Lund University Diabetes CentreLund University Malmö Sweden
| | - Kristin Schwerbel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Markus Jähnert
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Mandy Stadion
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
| | - Kilian Rittig
- Clinic for Angiology and Diabetology Frankfurt (Oder) Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| | - Heike Vogel
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Research Group Genetics of Obesity German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases Faculty of Health Sciences Brandenburg University of Potsdam Brandenburg Germany
| | - Annette Schürmann
- Department of Experimental Diabetology German Institute of Human Nutrition Potsdam‐Rehbruecke (DIfE) Nuthetal Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg Germany
- Institute of Nutritional Science University of Potsdam Brandenburg Germany
| |
Collapse
|
19
|
Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci U S A 2020; 117:30335-30343. [PMID: 33199621 DOI: 10.1073/pnas.2016112117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Implementation of regular physical activity helps in the maintenance of a healthy metabolic profile both in humans and mice through molecular mechanisms not yet completely defined. Here, we show that high-intensity interval training (HIIT) modifies the microRNA (miRNA) profile of circulating exosomes in mice, including significant increases in miR-133a and miR-133b Importantly, treatment of sedentary mice with exosomes isolated from the plasma of trained mice improves glucose tolerance, insulin sensitivity, and decreases plasma levels of triglycerides. Moreover, exosomes isolated from the muscle of trained mice display similar changes in miRNA content, and their administration to sedentary mice reproduces the improvement of glucose tolerance. Exosomal miRNAs up-regulated by HIIT target insulin-regulated transcription factor forkhead box O1 (FoxO1) and, accordingly, expression of FoxO1 is decreased in the liver of trained and exosome-treated mice. Treatment with exosomes transfected with a miR-133b mimic or with a specific siRNA targeting FoxO1 recapitulates the metabolic effects observed in trained mice. Overall, our data suggest that circulating exosomes released by the muscle carry a specific miRNA signature that is modified by exercise and induce expression changes in the liver that impact whole-body metabolic profile.
Collapse
|
20
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
21
|
Peng J, Wu HJ, Zhang HF, Fang SQ, Zeng R. miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma cells by regulating its target gene FGF1. Clin Transl Oncol 2020; 23:468-480. [PMID: 32617870 DOI: 10.1007/s12094-020-02440-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE To explore FGF1 and miR-143-3p expression in hepatocellular carcinoma (HCC) cells and its related mechanisms. METHODS Eighty-two HCC patients treated at our hospital from January 2018 to January 2019 were enrolled as Group A, while further 80 healthy people undergoing physical examinations during the same time period were enrolled as Group B. HCC cells and normal human liver cells were purchased, with HepG2 and SMMC-7721 cells transfected with pcDNA3.1-FGF1, si-FGF1, NC, miR-143-3p-inhibitor and miR-143-3p-mimics. FGF1 and miR-143-3p expression was detected by qRT-PCR. The expression of N-cadherin, vimentin, Snail, Slug, E-cadherin and γ-catenin was detected by Western Blotting (WB). Cell proliferation was detected by MTT assay. Cell invasion was detected by Transwell. Cell apoptosis was detected by flow cytometry (FCM). RESULTS FGF1 was highly expressed but miR-143-3p was poorly expressed in HCC cells. Areas under the curves (AUCs) of the two indicators were > 0.8. The indicators were correlated with the age, gender, tumor invasion, degree of differentiation, tumor location and TNM staging of the patients. Silencing FGF1 and overexpressing miR-143-3p could promote cell apoptosis, inhibit cell growth, cell epithelial-mesenchymal transition (EMT) and the expression of N-cadherin, vimentin, Snail and Slug, and increase the expression of E-cadherin and γ-catenin. Dual luciferase reporter gene assay (DLRGA) confirmed that FGF1 and miR-143-3p had a targeted relationship. The rescue experiment showed that the proliferation, invasion and apoptosis of HepG2 and SMMC-7721 cells in the miR-143-3p-mimics+pcDNA3.1-FGF1 and miR-143-3p-inhibitor+Si-FGF1 groups were not different from those in the miR-NC group. CONCLUSION Inhibiting FGF1 can upregulate miR-143-3p-mediated Hedgehog signaling pathway, and affect cells' EMT, proliferation and invasion, so FGF1 is expected to become a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- J Peng
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - H J Wu
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 117 Zhuodaoquan South Road, Wuhan, 430079, People's Republic of China
| | - H F Zhang
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 117 Zhuodaoquan South Road, Wuhan, 430079, People's Republic of China
| | - S Q Fang
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 117 Zhuodaoquan South Road, Wuhan, 430079, People's Republic of China
| | - R Zeng
- Department of Gynecologic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 117 Zhuodaoquan South Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
22
|
Adipose Tissue and FoxO1: Bridging Physiology and Mechanisms. Cells 2020; 9:cells9040849. [PMID: 32244542 PMCID: PMC7226803 DOI: 10.3390/cells9040849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Forkhead box O class proteins (FoxOs) are expressed nearly in all tissues and are involved in different functions such as energy metabolism, redox homeostasis, differentiation, and cell cycle arrest. The plasticity of FoxOs is demonstrated by post-translational modifications that determine diverse levels of transcriptional regulations also controlled by their subcellular localization. Among the different members of the FoxO family, we will focus on FoxO1 in adipose tissue, where it is abundantly expressed and is involved in differentiation and transdifferentiation processes. The capability of FoxO1 to respond differently in dependence of adipose tissue subtype underlines the specific involvement of the transcription factor in energy metabolism and the “browning” process of adipocytes. FoxO1 can localize to nuclear, cytoplasm, and mitochondrial compartments of adipocytes responding to different availability of nutrients and source of reactive oxygen species (ROS). Specifically, fasted state produced-ROS enhance the nuclear activity of FoxO1, triggering the transcription of lipid catabolism and antioxidant response genes. The enhancement of lipid catabolism, in combination with ROS buffering, allows systemic energetic homeostasis and metabolic adaptation of white/beige adipocytes. On the contrary, a fed state induces FoxO1 to accumulate in the cytoplasm, but also in the mitochondria where it affects mitochondrial DNA gene expression. The importance of ROS-mediated signaling in FoxO1 subcellular localization and retrograde communication will be discussed, highlighting key aspects of FoxO1 multifaceted regulation in adipocytes.
Collapse
|
23
|
Sánchez-Sendra B, Serna E, Navarro L, González-Muñoz JF, Portero J, Ramos A, Murgui A, Monteagudo C. Transcriptomic identification of miR-205 target genes potentially involved in metastasis and survival of cutaneous malignant melanoma. Sci Rep 2020; 10:4771. [PMID: 32179834 PMCID: PMC7075905 DOI: 10.1038/s41598-020-61637-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Cutaneous melanoma is an aggressive neoplasm and is responsible for the majority of skin cancer deaths. Several miRNAs are involved in melanoma tumor progression. One of them is miR-205, the loss of which contributes to the development of melanoma metastasis. We evaluated whole-genome mRNA expression profiling associated with different miR-205 expression levels in melanoma cells. Differential expression analysis identified 243 differentially expressed transcripts including inositol polyphosphate 5′-phosphatase-like protein-1 (INPPL1) and BTB/POZ Domain-Containing Protein 3 (BTBD3). INPPL1 and BTBD3 were downregulated when melanoma cells expressed miR-205, indicating that these genes are potential miR-205 targets. Additionally, the target prediction algorithm TargetScan revealed that INPPL1 and BTBD3 genes had predicted target sites of miR-205 in their 3′UTRs and functional analysis demonstrated that these genes were directly linked to miR-205. Interestingly, our clinical data showed that INPPL1 was significantly associated with lymph node metastasis-free survival (LNMFS), distant metastasis-free survival (DMFS) and melanoma specific survival (MSS). This study supports INPPL1 as a miR-205 target gene and, therefore, that the involvement of miR-205 in the metastatic dissemination of malignant melanoma is, at least in part, via INPPL1.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, Universitat de València, València, Spain.,Biomedical Research Institute INCLIVA, València, Spain
| | - Eva Serna
- Unidad Central de Investigación en Medicina, Facultad de Medicina, Universitat de València, València, Spain.,Department of Physiology, Universitat de València, València, Spain
| | - Lara Navarro
- Department of Pathology, Universitat de València, València, Spain.,Consortium Hospital General Universitario de València, València, Spain
| | | | - Jesica Portero
- Unidad Central de Investigación en Medicina, Facultad de Medicina, Universitat de València, València, Spain
| | - Alberto Ramos
- Biomedical Research Institute INCLIVA, València, Spain
| | - Amelia Murgui
- Department of Biochemistry and Molecular Biology, Universitat de València, València, Spain
| | - Carlos Monteagudo
- Department of Pathology, Universitat de València, València, Spain. .,Biomedical Research Institute INCLIVA, València, Spain. .,Department of Pathology, Hospital Clínico Universitario de Valencia, València, Spain.
| |
Collapse
|
24
|
Huang Y, Xiao Y, Liu Y, Guo M, Guo Q, Zhou F, Liu T, Su T, Xiao Y, Luo X. MicroRNA-188 regulates aging-associated metabolic phenotype. Aging Cell 2020; 19:e13077. [PMID: 31762181 PMCID: PMC6974730 DOI: 10.1111/acel.13077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing aging population, aging-associated diseases are becoming epidemic worldwide, including aging-associated metabolic dysfunction. However, the underlying mechanisms are poorly understood. In the present study, we aimed to investigate the role of microRNA miR-188 in the aging-associated metabolic phenotype. The results showed that the expression of miR-188 increased gradually in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) of mice during aging. MiR-188 knockout mice were resistant to the aging-associated metabolic phenotype and had higher energy expenditure. Meanwhile, adipose tissue-specific miR-188 transgenic mice displayed the opposite phenotype. Mechanistically, we identified the thermogenic-related gene Prdm16 (encoding PR domain containing 16) as the direct target of miR-188. Notably, inhibition of miR-188 expression in BAT and iWAT of aged mice by tail vein injection of antagomiR-188 ameliorated aging-associated metabolic dysfunction significantly. Taken together, our findings suggested that miR-188 plays an important role in the regulation of the aging-associated metabolic phenotype, and targeting miR-188 could be an effective strategy to prevent aging-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Min Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Fangliang Zhou
- Department of Biochemistry and Molecular BiologyHunan University of Chinese MedicineChangshaChina
| | - Ting Liu
- Department of EndocrinologyChangsha Central HospitalChangshaChina
| | - Tian Su
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yuzhong Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xiang‐Hang Luo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
25
|
Hochreuter MY, Altıntaş A, Garde C, Emanuelli B, Kahn CR, Zierath JR, Vienberg S, Barrès R. Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. Hepatol Res 2019; 49:1451-1465. [PMID: 31408567 PMCID: PMC6972499 DOI: 10.1111/hepr.13419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/03/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
AIM Hepatic insulin resistance is a hallmark of type 2 diabetes and non-alcoholic fatty liver disease. Dysregulation of microRNA (miRNA) expression in insulin-resistant livers might coordinate impaired hepatic metabolic function. Here, we aimed to discover miRNAs and their downstream targets involved in hepatic insulin resistance. METHODS We determined miRNA expression profiles by small RNA sequencing of two mouse models of impaired hepatic insulin action: high-fat diet-induced obesity and liver-specific insulin receptor knockout. Conversely, we assessed the hepatic miRNA expression profile after treatment with the antidiabetic hormone, fibroblast growth factor 21 (FGF21). Ontology analysis of predicted miRNA gene targets was performed to identify regulated gene pathways. Target enrichment analysis and miRNA mimic overexpression in vitro were used to identify unified protein targets of nodes of regulated miRNAs. RESULTS We identified an array of miRNA species regulated by impaired liver insulin action or after fibroblast growth factor 21 treatment. Ontology analysis of predicted miRNA gene targets identified pathways controlling hepatic energy metabolism and insulin sensitivity. We identified a node of two miRNAs downregulated in the livers of liver-specific insulin receptor knockout mice, miR-883b and miR-205, which positively regulate the expression of transcription factor zinc finger E-box-binding homeobox 1 (ZBED1). We found another node of two miRNAs upregulated in the livers of fibroblast growth factor 21-treated mice, miR-155-3p and miR-1968-5p, which canonically downregulates the caveola component, polymerase I and transcript release factor (PTRF), a gene previously implicated in hepatic energy metabolism. CONCLUSIONS This study identifies two nodes of coregulated miRNAs that might coordinately control hepatic energy metabolism in states of insulin resistance.
Collapse
Affiliation(s)
- Mette Yde Hochreuter
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - C. Ronald Kahn
- Section of Integrative Physiology and MetabolismJoslin Diabetes Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark,Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden,Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | | | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
26
|
Cheng Z. The FoxO-Autophagy Axis in Health and Disease. Trends Endocrinol Metab 2019; 30:658-671. [PMID: 31443842 DOI: 10.1016/j.tem.2019.07.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Autophagy controls cellular remodeling and quality control. Dysregulated autophagy has been implicated in several human diseases including obesity, diabetes, cardiovascular disease, neurodegenerative diseases, and cancer. Current evidence has revealed that FoxO (forkhead box class O) transcription factors have a multifaceted role in autophagy regulation and dysregulation. Nuclear FoxOs transactivate genes that control the formation of autophagosomes and their fusion with lysosomes. Independently of transactivation, cytosolic FoxO proteins induce autophagy by directly interacting with autophagy proteins. Autophagy is also controlled by FoxOs through epigenetic mechanisms. Moreover, FoxO proteins can be degraded directly or indirectly by autophagy. Cutting-edge evidence is reviewed that the FoxO-autophagy axis plays a crucial role in health and disease.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Food Science and Human Nutrition Department, The University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
27
|
Wang Y, Wan X, Hao Y, Zhao Y, Du L, Huang Y, Liu Z, Wang Y, Wang N, Zhang P. NR6A1 regulates lipid metabolism through mammalian target of rapamycin complex 1 in HepG2 cells. Cell Commun Signal 2019; 17:77. [PMID: 31315616 PMCID: PMC6637573 DOI: 10.1186/s12964-019-0389-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Background Lipogenesis is required for the optimal growth of many types of cancer cells, it is shown to control the biosynthesis of the lipid bilayer membrane during rapid proliferation and metastasis, provides cancer cells with signaling lipid molecules to support cancer development and make cancer cells more resistant to oxidative stress-induced cell death. Though multiple lipogenic enzymes have been identified to mediate this metabolic change, how the expression of these lipogenic enzymes are transcriptionally regulated remains unclear. Methods Gain- and loss-of-function experiments were conducted to assess the role of transcriptional repressor, nuclear receptor sub-family 6, group A, member 1 (NR6A1) in HepG2 cells. RT-qPCR method was performed to investigate target gene of NR6A1. Western blot was employed to determine the mechanisms by which NR6A1 regulates lipid accumulation in HepG2 cells. Results We provide evidence that NR6A1 is a novel regulator of lipid metabolism in HepG2 cells. NR6A1 knockdown can increase lipid accumulation as well as insulin-induced proliferation and migration of HepG2 cells. The lipogenic effect correlated well with the expression of lipogenic genes, including fatty acid synthase (FAS), diglyceride acyltransferase-2 (DGAT2), malic enzyme 1 (ME1), microsomal triglyceride transfer protein (MTTP) and phosphoenolpyruvate carboxykinase (PEPCK). NR6A1 knockdown also increased the expression of carnitine palmitoyltransferase 1A (CPT1a), the rate-limiting enzyme in fatty acid oxidation. Furthermore, NR6A1 knockdown induced lipid accumulation through mammalian target of rapamycin complex 1 (mTORC1), but not mTORC2. Moreover, siRNA-mediated knockdown of NR6A1 increased expression of insulin receptor (INSR) and potentitated insulin-induced phosphorylation of mTOR and AKT partly via miR-205-5p in HepG2 cells. Conclusions These findings provide important new insights into the role of NR6A1 in the lipogenesis in HepG2 cells. Graphical abstract .![]() Electronic supplementary material The online version of this article (10.1186/s12964-019-0389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinfang Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230001, China. .,Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Xiaohong Wan
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230001, China.,Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yuanyuan Zhao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lanlan Du
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Florida, 32224, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Peng Zhang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, 230001, China. .,Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China. .,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
28
|
Obesity, Insulin Resistance, and Colorectal Cancer: Could miRNA Dysregulation Play A Role? Int J Mol Sci 2019; 20:ijms20122922. [PMID: 31207998 PMCID: PMC6628223 DOI: 10.3390/ijms20122922] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with insulin resistance and low-grade inflammation. Insulin resistance is a risk factor for cancer. A recent chapter in epigenetics is represented by microRNAs (miRNAs), which post-transcriptionally regulate gene expression. Dysregulated miRNA profiles have been associated with diseases including obesity and cancer. Herein we report dysregulated miRNAs in obesity both in animal models and in humans, and we also document dysregulated miRNAs in colorectal cancer (CRC), as example of an obesity-related cancer. Some of the described miRNAs are found to be similarly dysregulated both in obesity, insulin resistance (IR), and CRC. Thus, we present miRNAs as a potential molecular link between obesity and CRC onset and development, giving a new perspective on the role of miRNAs in obesity-associated cancers.
Collapse
|
29
|
Song Y, Wu L, Li M, Xiong X, Fang Z, Zhou J, Yan G, Chen X, Yang J, Li Y. Down-regulation of MicroRNA-592 in obesity contributes to hyperglycemia and insulin resistance. EBioMedicine 2019; 42:494-503. [PMID: 30948354 PMCID: PMC6491650 DOI: 10.1016/j.ebiom.2019.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background Many studies have demonstrated that microRNAs, a class of small and non-coding RNA molecules, play an important role in the regulation of glucose and lipid homeostasis. In the present study, we sought to investigate the function of miR-592 in the development of obesity-associated metabolic disorders, including hyperglycemia andinsulin resistance. Methods The expression levels of miR-592 were measured in the liver of obese mice and humans by quantitative reverse transcription PCR. Loss- and gain-of function experiments were employed to explore the metabolic function of miR-592 using locked nucleic acids and adenovirus in lean and obese mice, respectively. The molecular target of miR-592 was determined by western blotting and luciferase reporter assays. Findings We found a significant decreased expression of miR-592 in the liver of obese mice and humans. Inhibition of miR-592 led to elevated blood glucose levels, enhanced gluconeogenesis and reduced insulin sensitivity in lean mice. In contrast, adenovirus-mediated overexpression of hepatic miR-592 improved metabolic disorders in obese mice. Mechanistically, we found that the transcription factor forkhead box O1 (FOXO1) is a direct target gene of miR-592 to mediate its metabolic functions. miR-592 was able to inhibit the mRNA and protein expression of FOXO1 by binding to its 3′-untranslated region. Interpretations Our findings demonstrate that obesity-associated down-regulation of miR-592 plays an important role in the progression of metabolic diseases. Restoration of hepatic miR-592 could improve glucose and lipid metabolism in obese mice. Fund This work is supported by the National Key Research and Development Program of China (No. 2016YFC1304805 to Dr. Chen), Natural Science Foundation of China (No. 81771574 to Dr. Wu), Shanghai Science Foundation (No. 18ZR1437800 to Dr. Li), Science and Technology Commission of Shanghai Municipality (Nos.18dz2304400 and 15,411,970,700 to Dr. Yang).
Collapse
Affiliation(s)
- Yuping Song
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Menghui Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuelian Xiong
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute of Metabolic Diseases, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Fudan University, Shanghai, China
| | - Zhenfu Fang
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofeng Yan
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Yang
- Department of Endocrinology and Metabolism, Minhang Branch, Zhongshan Hospital, Central Hospital of Minhang District, Shanghai Minhang Hospital, Fudan University, Shanghai, China.
| | - Yao Li
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Suksangrat T, Phannasil P, Jitrapakdee S. miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:129-148. [DOI: 10.1007/978-3-030-12668-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
MicroRNAs as Regulators of Insulin Signaling: Research Updates and Potential Therapeutic Perspectives in Type 2 Diabetes. Int J Mol Sci 2018; 19:ijms19123705. [PMID: 30469501 PMCID: PMC6321520 DOI: 10.3390/ijms19123705] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022] Open
Abstract
The insulin signaling pathway is composed of a large number of molecules that positively or negatively modulate insulin specific signal transduction following its binding to the cognate receptor. Given the importance of the final effects of insulin signal transduction, it is conceivable that many regulators are needed in order to tightly control the metabolic or proliferative functional outputs. MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively modulate gene expression through their specific binding within the 3′UTR sequence of messenger RNA (mRNA), thus causing mRNA decoy or translational inhibition. In the last decade, miRNAs have been addressed as pivotal cellular rheostats which control many fundamental signaling pathways, including insulin signal transduction. Several studies demonstrated that multiple alterations of miRNAs expression or function are relevant for the development of insulin resistance in type 2 diabetes (T2D); such alterations have been highlighted in multiple insulin target organs including liver, muscles, and adipose tissue. Indirectly, miRNAs have been identified as modulators of inflammation-derived insulin resistance, by controlling/tuning the activity of innate immune cells in insulin target tissues. Here, we review main findings on miRNA functions as modulators of insulin signaling in physiologic- or in T2D insulin resistance- status. Additionally, we report the latest hypotheses of prospective therapies involving miRNAs as potential targets for future drugs in T2D.
Collapse
|