1
|
Piccoli M, Barbato L, Maiorana NV, Mingione A, Raimondo F, Ghirimoldi M, Cirillo F, Schiepati M, Salerno D, Anastasia L, Albi E, Manfredi M, Bocci T, Priori A, Signorelli P. Direct Current Stimulation (DCS) Modulates Lipid Metabolism and Intercellular Vesicular Trafficking in SHSY-5Y Cell Line: Implications for Parkinson's Disease. J Neurochem 2025; 169:e70014. [PMID: 39930930 PMCID: PMC11811683 DOI: 10.1111/jnc.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/12/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
The modulation of the brain's electrical activity for therapeutic purposes has recently gained attention, supported by the promising results obtained through the non-invasive application of transcranial direct current stimulation (tDCS) in the treatment of neurodegenerative and neurological diseases. To optimize therapeutic efficacy, it is crucial to investigate the cellular and molecular effects of tDCS. This will help to identify important biomarkers, predict patient's response and develop personalized treatments. In this study, we applied direct current stimulation (DCS) to a neural cell line, using mild currents over short periods of time (0.5 mA, 20 min), with 24-h intervals. We observed that DCS induced changes in the cellular lipidome, with transient effects observed after a single stimulation (lasting 24 h) and more significant, long-lasting effects (up to 72 h) after repeated stimulation cycles. In neural cells, multiple DCS treatment modulated structural membrane lipids (PE, PS, PI), downregulated glycerol lipids with ether-linked fatty acids and pro-inflammatory lipids (ceramides and lyso-glycerophospholipids) (p ≤ 0.005). Multiple DCS sessions altered transcriptional activity by decreasing the expression of inflammatory cytokines (TNF-α, p ≤ 0.05; IL-1β, p ≤ 0.01), while increasing the expression of neuroprotective factors such as heme oxygenase-1 (p ≤ 0.0001) and brain-derived neurotrophic factor (p ≤ 0.05), as well as proteins involved in vesicular transport (SNARE, sorting nexins and seipin and α-synuclein; p ≤ 0.05). In addition, DCS enhanced the release of extracellular vesicles, with repeated stimulations significantly increasing the release of exosomes threefold. In conclusion, while a single electrical stimulation induces transient metabolic changes with limited phenotypic effects, repeated applications induce a broader and deeper modulation of lipid species. This may lead to a neuroprotective and neuroplasticity-focussed transcriptional profile, potentially supporting the therapeutic effects of tDCS at the cellular and molecular level in patients..
Collapse
Affiliation(s)
- Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC)IRCCS Policlinico San DonatoMilanItaly
- School of MedicineUniversity Vita‐Salute San RaffaeleMilanItaly
| | - Luisa Barbato
- Biochemistry LaboratoryIRCCS Policlinico San DonatoMilanItaly
| | | | - Alessandra Mingione
- “Aldo Ravelli” Research Centre, Department of Health SciencesUniversity of MilanMilanItaly
| | | | - Marco Ghirimoldi
- Biological Mass Spectrometry Lab, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Federica Cirillo
- Institute for Molecular and Translational Cardiology (IMTC)IRCCS Policlinico San DonatoMilanItaly
| | - Mattia Schiepati
- “Aldo Ravelli” Research Centre, Department of Health SciencesUniversity of MilanMilanItaly
| | - Domenico Salerno
- School of Medicine and Surgery BioNanoMedicine Center NANOMIBUniversity of Milan‐BicoccaMonzaItaly
| | - Luigi Anastasia
- Institute for Molecular and Translational Cardiology (IMTC)IRCCS Policlinico San DonatoMilanItaly
- School of MedicineUniversity Vita‐Salute San RaffaeleMilanItaly
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, Interno Orto BotanicoUniversity of PerugiaPerugiaItaly
| | - Marcello Manfredi
- Institute for Molecular and Translational Cardiology (IMTC)IRCCS Policlinico San DonatoMilanItaly
- Biological Mass Spectrometry Lab, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
- Center for Translational Research Autoimmune Diseases and Allergic DiseasesUniversity of Piemonte OrientaleNovaraItaly
| | - Tommaso Bocci
- “Aldo Ravelli” Research Centre, Department of Health SciencesUniversity of MilanMilanItaly
| | - Alberto Priori
- “Aldo Ravelli” Research Centre, Department of Health SciencesUniversity of MilanMilanItaly
| | - Paola Signorelli
- Biochemistry LaboratoryIRCCS Policlinico San DonatoMilanItaly
- “Aldo Ravelli” Research Centre, Department of Health SciencesUniversity of MilanMilanItaly
| |
Collapse
|
2
|
Li C, Sun XN, Funcke JB, Vanharanta L, Joffin N, Li Y, Prasanna X, Paredes M, Joung C, Gordillo R, Vörös C, Kulig W, Straub L, Chen S, Velasco J, Cobb A, Padula DL, Wang MY, Onodera T, Varlamov O, Li Y, Liu C, Nawrocki AR, Zhao S, Oh DY, Wang ZV, Goodman JM, Wynn RM, Vattulainen I, Han Y, Ikonen E, Scherer PE. Adipogenin Dictates Adipose Tissue Expansion by Facilitating the Assembly of a Dodecameric Seipin Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605195. [PMID: 39211078 PMCID: PMC11360994 DOI: 10.1101/2024.07.25.605195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Adipogenin (Adig) is an evolutionarily conserved microprotein and is highly expressed in adipose tissues and testis. Here, we identify Adig as a critical regulator for lipid droplet formation in adipocytes. We determine that Adig interacts directly with seipin, leading to the formation of a rigid complex. We solve the structure of the seipin/Adig complex by Cryo-EM at 2.98Å overall resolution. Surprisingly, seipin can form two unique oligomers, undecamers and dodecamers. Adig selectively binds to the dodecameric seipin complex. We further find that Adig promotes seipin assembly by stabilizing and bridging adjacent seipin subunits. Functionally, Adig plays a key role in generating lipid droplets in adipocytes. In mice, inducible overexpression of Adig in adipocytes substantially increases fat mass, with enlarged lipid droplets. It also elevates thermogenesis during cold exposure. In contrast, inducible adipocyte-specific Adig knockout mice manifest aberrant lipid droplet formation in brown adipose tissues and impaired cold tolerance.
Collapse
|
3
|
Nogueira VB, de Oliveira Mendes-Aguiar C, Teixeira DG, Freire-Neto FP, Tassi LZ, Ferreira LC, Wilson ME, Lima JG, Jeronimo SMB. Impaired signaling pathways on Berardinelli-Seip congenital lipodystrophy macrophages during Leishmania infantum infection. Sci Rep 2024; 14:11236. [PMID: 38755198 PMCID: PMC11099049 DOI: 10.1038/s41598-024-61663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Berardinelli-Seip congenital lipodystrophy (CGL), a rare autosomal recessive disorder, is characterized by a lack of adipose tissue. Infections are one of the major causes of CGL individuals' premature death. The mechanisms that predispose to infections are poorly understood. We used Leishmania infantum as an in vitro model of intracellular infection to explore mechanisms underlying the CGL infection processes, and to understand the impact of host mutations on Leishmania survival, since this pathogen enters macrophages through specialized membrane lipid domains. The transcriptomic profiles of both uninfected and infected monocyte-derived macrophages (MDMs) from CGL (types 1 and 2) and controls were studied. MDMs infected with L. infantum showed significantly downregulated expression of genes associated with infection-response pathways (MHC-I, TCR-CD3, and granzymes). There was a transcriptomic signature in CGL cells associated with impaired membrane trafficking and signaling in response to infection, with concomitant changes in the expression of membrane-associated genes in parasites (e.g. δ-amastins). We identified pathways suggesting the lipid storage dysfunction led to changes in phospholipids expression and impaired responses to infection, including immune synapse (antigen presentation, IFN-γ signaling, JAK/STAT); endocytosis; NF-kappaB signaling; and phosphatidylinositol biosynthesis. In summary, lipid metabolism of the host plays an important role in determining antigen presentation pathways.
Collapse
Affiliation(s)
- Viviane Brito Nogueira
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | | | - Diego Gomes Teixeira
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Francisco Paulo Freire-Neto
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Leo Zenon Tassi
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
| | - Leonardo Capistrano Ferreira
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mary Edythe Wilson
- Departments of Internal Medicine and Microbiology & Immunology, University of Iowa and the Veterans' Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Josivan Gomes Lima
- Department of Clinical Medicine, Onofre Lopes University Hospital, 620 Nilo Pecanha, Natal, RN, 59013300, Brazil
| | - Selma Maria Bezerra Jeronimo
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
- Institute of Tropical Medicine of Rio Grande do Norte, 655 Passeio dos Girassois, Natal, RN, 59078190, Brazil.
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
4
|
Meng Z, Liu C, Xu M, Tao Y, Li H, Wang X, Liao J, Wang M. Adipose transplantation improves metabolism and atherosclerosis but not perivascular adipose tissue abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe null mice. Am J Physiol Cell Physiol 2024; 326:C1410-C1422. [PMID: 38525541 PMCID: PMC11371364 DOI: 10.1152/ajpcell.00698.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuangxing Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengke Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongqiang Tao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyu Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xijia Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mengyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
PPARγ Gene as a Possible Link between Acquired and Congenital Lipodystrophy and its Modulation by Dietary Fatty Acids. Nutrients 2022; 14:nu14224742. [PMID: 36432429 PMCID: PMC9693235 DOI: 10.3390/nu14224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases that could be of genetic or acquired origin. The main complication of lipodystrophy is the dysfunction of adipose tissue, which leads to an ectopic accumulation of triglycerides in tissues such as the liver, pancreas and skeletal muscle. This abnormal fat distribution is associated with hypertriglyceridemia, insulin resistance, liver steatosis, cardiomyopathies and chronic inflammation. Although the origin of acquired lipodystrophies remains unclear, patients show alterations in genes related to genetic lipodystrophy, suggesting that this disease could be improved or aggravated by orchestrating gene activity, for example by diet. Nowadays, the main reason for adipose tissue dysfunction is an imbalance in metabolism, caused in other pathologies associated with adipose tissue dysfunction by high-fat diets. However, not all dietary fats have the same health implications. Therefore, this article aims to summarize the main genes involved in the pathophysiology of lipodystrophy, identify connections between them and provide a systematic review of studies published between January 2017 and January 2022 of the dietary fats that can modulate the development of lipodystrophy through transcriptional regulation or the regulation of protein expression in adipocytes.
Collapse
|
6
|
Lan T, Li H, Yang S, Shi M, Han L, Sahu SK, Lu Y, Wang J, Zhou M, Liu H, Huang J, Wang Q, Zhu Y, Wang L, Xu Y, Lin C, Liu H, Hou Z. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022; 25:105117. [PMID: 36185367 PMCID: PMC9523411 DOI: 10.1016/j.isci.2022.105117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Tianming Lan
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minhui Shi
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jiangang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hui Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Junxuan Huang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qing Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Zhu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanchun Xu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| | - Chuyu Lin
- Shenzhen Zhong Nong Jing Yue Biotech Company Limited, Shenzhen 518120, China
- Corresponding author
| | - Huan Liu
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
- Corresponding author
| | - Zhijun Hou
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Corresponding author
| |
Collapse
|
7
|
Zhou H, Li J, Su H, Li J, Lydic TA, Young ME, Chen W. BSCL2/Seipin deficiency in hearts causes cardiac energy deficit and dysfunction via inducing excessive lipid catabolism. Clin Transl Med 2022; 12:e736. [PMID: 35384404 PMCID: PMC8982503 DOI: 10.1002/ctm2.736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Heart failure (HF) is one of the leading causes of death worldwide and is associated with cardiac metabolic perturbations. Human Type 2 Berardinelli-Seip Congenital Lipodystrophy (BSCL2) disease is caused by mutations in the BSCL2 gene. Global lipodystrophic Bscl2-/- mice exhibit hypertrophic cardiomyopathy with reduced cardiac steatosis. Whether BSCL2 plays a direct role in regulating cardiac substrate metabolism and/or contractile function remains unknown. METHODS We generated mice with cardiomyocyte-specific deletion of Bscl2 (Bscl2cKO ) and studied their cardiac substrate utilisation, bioenergetics, lipidomics and contractile function under baseline or after either a treatment regimen using fatty acid oxidation (FAO) inhibitor trimetazidine (TMZ) or a prevention regimen with high-fat diet (HFD) feeding. Mice with partial ATGL deletion and cardiac-specific deletion of Bscl2 were also generated followed by cardiac phenotyping. RESULTS Different from hypertrophic cardiomyopathy in Bscl2-/- mice, mice with cardiac-specific deletion of Bscl2 developed systolic dysfunction with dilation. Myocardial BSCL2 deletion led to elevated ATGL expression and FAO along with reduced cardiac lipid contents. Cardiac dysfunction in Bscl2cKO mice was independent of mitochondrial dysfunction and oxidative stress, but associated with decreased metabolic reserve and ATP levels. Importantly, cardiac dysfunction in Bscl2cKO mice could be partially reversed by FAO inhibitor TMZ, or prevented by genetic abolishment of one ATGL allele or HFD feeding. Lipidomic analysis further identified markedly reduced glycerolipids, glycerophospholipids, NEFA and acylcarnitines in Bscl2cKO hearts, which were partially normalised by TMZ or HFD. CONCLUSIONS We identified a new form of cardiac dysfunction with excessive lipid utilisation which ultimately causes cardiac substrate depletion and bioenergetics failure. Our findings also uncover a crucial role of BSCL2 in controlling cardiac lipid catabolism and contractile function and provide novel insights into metabolically treating energy-starved HF using FAO inhibitor or HFD.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of PhysiologyMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Jie Li
- Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Huabo Su
- Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Ji Li
- Department of SurgeryMorsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Todd A. Lydic
- Department of PhysiologyMichigan State UniversityEast LansingMichiganUSA
| | - Martin E Young
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Weiqin Chen
- Department of PhysiologyMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
8
|
Rochford JJ. When Adipose Tissue Lets You Down: Understanding the Functions of Genes Disrupted in Lipodystrophy. Diabetes 2022; 71:589-598. [PMID: 35316838 DOI: 10.2337/dbi21-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Lipodystrophy syndromes are conditions in which the adipose tissue mass of an individual is altered inappropriately. The change in adipose mass can range from a relatively modest and subtle redistribution in some individuals with partial lipodystrophy to a near-complete absence of adipose tissue in the most severe forms of generalized lipodystrophy. The common feature is a disconnection between the need of the individual for a safe, healthy lipid storage capacity and the available adipose mass to perform this critical role. The inability to partition lipids for storage in appropriately functioning adipocytes leads to lipid accumulation in other tissues, which typically results in conditions such as diabetes, dyslipidemia, fatty liver, and cardiovascular disease. Several genes have been identified whose disruption leads to inherited forms of lipodystrophy. There is a link between some of these genes and adipose dysfunction, so the molecular basis of disease pathophysiology appears clear. However, for other lipodystrophy genes, it is not evident why their disruption should affect adipose development or function or, in the case of partial lipodystrophy, why only some adipose depots should be affected. Elucidating the molecular functions of these genes and their cellular and physiological effects has the capacity to uncover fundamental new insights regarding the development and functions of adipose tissue. This information is also likely to inform better management of lipodystrophy and improved treatments for patients. In addition, the findings will often be relevant to other conditions featuring adipose tissue dysfunction, including the more common metabolic disease associated with obesity.
Collapse
|
9
|
Magré J, Prieur X. Seipin Deficiency as a Model of Severe Adipocyte Dysfunction: Lessons from Rodent Models and Teaching for Human Disease. Int J Mol Sci 2022; 23:740. [PMID: 35054926 PMCID: PMC8775404 DOI: 10.3390/ijms23020740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity prevalence is increasing worldwide, leading to cardiometabolic morbidities. Adipocyte dysfunction, impairing white adipose tissue (WAT) expandability and metabolic flexibility, is central in the development of obesity-related metabolic complications. Rare syndromes of lipodystrophy characterized by an extreme paucity of functional adipose tissue should be considered as primary adipocyte dysfunction diseases. Berardinelli-Seip congenital lipodystrophy (BSCL) is the most severe form with a near absence of WAT associated with cardiometabolic complications such as insulin resistance, liver steatosis, dyslipidemia, and cardiomyopathy. Twenty years ago, mutations in the BSCL2 gene have been identified as the cause of BSCL in human. BSCL2 encodes seipin, an endoplasmic reticulum (ER) anchored protein whose function was unknown back then. Studies of seipin knockout mice or rats demonstrated how seipin deficiency leads to severe lipodystrophy and to cardiometabolic complications. At the cellular levels, seipin is organized in multimers that are particularly enriched at ER/lipid droplet and ER/mitochondria contact sites. Seipin deficiency impairs both adipocyte differentiation and mature adipocyte maintenance. Experiments using adipose tissue transplantation in seipin knockout mice and tissue-specific deletion of seipin have provided a large body of evidence that liver steatosis, cardiomyopathy, and renal injury, classical diabetic complications, are all consequences of lipodystrophy. Rare adipocyte dysfunctions such as in BSCL are the key paradigm to unravel the pathways that control adipocyte homeostasis. The knowledge gathered through the study of these pathologies may bring new strategies to maintain and improve adipose tissue expandability.
Collapse
Affiliation(s)
| | - Xavier Prieur
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, L’institut du Thorax, Université de Nantes, F-44000 Nantes, France;
| |
Collapse
|
10
|
Rao MJ, Goodman JM. Seipin: harvesting fat and keeping adipocytes healthy. Trends Cell Biol 2021; 31:912-923. [PMID: 34215489 DOI: 10.1016/j.tcb.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
Seipin is a key protein in the assembly of cytoplasmic lipid droplets (cLDs) and their maintenance at endoplasmic reticulum (ER)-LD junctions; the absence of seipin results in generalized lipodystrophy. How seipin mediates LD dynamics and prevents lipodystrophy are not well understood. New evidence suggests that seipin attracts triglyceride monomers from the ER to sites of droplet formation. By contrast, seipin may not be directly involved in the assembly of nuclear LDs and may actually suppress their formation at a distance. Seipin promotes adipogenesis, but lipodystrophy may also involve postadipogenic effects. We hypothesize that among these are a cycle of runaway lipolysis and lipotoxicity caused by aberrant LDs, resulting in a depletion of fat stores and a failure of adipose and other cells to thrive.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA.
| |
Collapse
|
11
|
Suchacki KJ, Stimson RH. Nutritional Regulation of Human Brown Adipose Tissue. Nutrients 2021; 13:nu13061748. [PMID: 34063868 PMCID: PMC8224032 DOI: 10.3390/nu13061748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent identification of brown adipose tissue in adult humans offers a new strategy to increase energy expenditure to treat obesity and associated metabolic disease. While white adipose tissue (WAT) is primarily for energy storage, brown adipose tissue (BAT) is a thermogenic organ that increases energy expenditure to generate heat. BAT is activated upon cold exposure and improves insulin sensitivity and lipid clearance, highlighting its beneficial role in metabolic health in humans. This review provides an overview of BAT physiology in conditions of overnutrition (obesity and associated metabolic disease), undernutrition and in conditions of altered fat distribution such as lipodystrophy. We review the impact of exercise, dietary macronutrients and bioactive compounds on BAT activity. Finally, we discuss the therapeutic potential of dietary manipulations or supplementation to increase energy expenditure and BAT thermogenesis. We conclude that chronic nutritional interventions may represent a useful nonpharmacological means to enhance BAT mass and activity to aid weight loss and/or improve metabolic health.
Collapse
|
12
|
McGrath C, Little-Letsinger SE, Sankaran JS, Sen B, Xie Z, Styner MA, Zong X, Chen W, Rubin J, Klett EL, Coleman RA, Styner M. Exercise Increases Bone in SEIPIN Deficient Lipodystrophy, Despite Low Marrow Adiposity. Front Endocrinol (Lausanne) 2021; 12:782194. [PMID: 35145475 PMCID: PMC8822583 DOI: 10.3389/fendo.2021.782194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
Exercise, typically beneficial for skeletal health, has not yet been studied in lipodystrophy, a condition characterized by paucity of white adipose tissue, with eventual diabetes, and steatosis. We applied a mouse model of global deficiency of Bscl2 (SEIPIN), required for lipid droplet formation. Male twelve-week-old B6 knockouts (KO) and wild type (WT) littermates were assigned six-weeks of voluntary, running exercise (E) versus non-exercise (N=5-8). KO weighed 14% less than WT (p=0.01) and exhibited an absence of epididymal adipose tissue; KO liver Plin1 via qPCR was 9-fold that of WT (p=0.04), consistent with steatosis. Bone marrow adipose tissue (BMAT), unlike white adipose, was measurable, although 40.5% lower in KO vs WT (p=0.0003) via 9.4T MRI/advanced image analysis. SEIPIN ablation's most notable effect marrow adiposity was in the proximal femoral diaphysis (-56% KO vs WT, p=0.005), with relative preservation in KO-distal-femur. Bone via μCT was preserved in SEIPIN KO, though some quality parameters were attenuated. Running distance, speed, and time were comparable in KO and WT. Exercise reduced weight (-24% WT-E vs WT p<0.001) but not in KO. Notably, exercise increased trabecular BV/TV in both (+31%, KO-E vs KO, p=0.004; +14%, WT-E vs WT, p=0.006). The presence and distribution of BMAT in SEIPIN KO, though lower than WT, is unexpected and points to a uniqueness of this depot. That trabecular bone increases were achievable in both KO and WT, despite a difference in BMAT quantity/distribution, points to potential metabolic flexibility during exercise-induced skeletal anabolism.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah E. Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeyantt Srinivas Sankaran
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Buer Sen
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin A. Styner
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaopeng Zong
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
| | - Eric L. Klett
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
- Department of Nutrition, Gillings School of Global Public Health, UNC, Chapel Hill, NC, United States
| | - Rosalind A. Coleman
- Department of Nutrition, Gillings School of Global Public Health, UNC, Chapel Hill, NC, United States
| | - Maya Styner
- Department of Medicine, Division of Endocrinology & Metabolism, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- North Carolina Diabetes Research Center (NCDRC), Chapel Hill, NC, United States
- *Correspondence: Maya Styner,
| |
Collapse
|
13
|
Jia Z, Yue F, Chen X, Narayanan N, Qiu J, Syed SA, Imbalzano AN, Deng M, Yu P, Hu C, Kuang S. Protein Arginine Methyltransferase PRMT5 Regulates Fatty Acid Metabolism and Lipid Droplet Biogenesis in White Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002602. [PMID: 33304767 PMCID: PMC7709973 DOI: 10.1002/advs.202002602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/06/2023]
Abstract
The protein arginine methyltransferase 5 (PRMT5) is an emerging regulator of cancer and stem cells including adipogenic progenitors. Here, a new physiological role of PRMT5 in adipocytes and systemic metabolism is reported. Conditional knockout mice were generated to ablate the Prmt5 gene specifically in adipocytes (Prmt5AKO). The Prmt5AKO mice exhibit sex- and depot-dependent progressive lipodystrophy that is more pronounced in females and in visceral (than subcutaneous) white fat. The lipodystrophy and associated energy imbalance, hyperlipidemia, hepatic steatosis, glucose intolerance, and insulin resistance are exacerbated by high-fat-diet. Mechanistically, Prmt5 methylates and releases the transcription elongation factor SPT5 from Berardinelli-Seip congenital lipodystrophy 2 (Bscl2, encoding Seipin) promoter, and Prmt5AKO disrupts Seipin-mediated lipid droplet biogenesis. Prmt5 also methylates Sterol Regulatory Element-Binding Transcription Factor 1a (SREBP1a) and promotes lipogenic gene expression, and Prmt5AKO suppresses SREBP1a-dependent fatty acid metabolic pathways in adipocytes. Thus, PRMT5 plays a critical role in regulating lipid metabolism and lipid droplet biogenesis in adipocytes.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIN47907USA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteIN47907USA
| | - Jiamin Qiu
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01605USA
| | - Meng Deng
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIN47907USA
- Bindley Bioscience CenterPurdue UniversityWest LafayetteIN47907USA
| | - Peng Yu
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
- Medical Big Data CenterSichuan UniversityChengdu610041China
| | - Changdeng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndiana47907USA
- Purdue University Center for Cancer ResearchWest LafayetteIndiana47907USA
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteIN47907USA
- Purdue University Center for Cancer ResearchWest LafayetteIndiana47907USA
| |
Collapse
|