1
|
Simmen T, Pellegrini L. A lipid in transit - the journey of cholesterol into the heart of mitochondrial research. J Cell Sci 2025; 138:jcs263907. [PMID: 40337919 DOI: 10.1242/jcs.263907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Mitochondrial cholesterol biology in non-steroidogenic tissues remains understudied in cell science. Although detecting cholesterol in mitochondria is challenging due to isolation difficulties, studies using mitoplasts (mitochondria stripped of their outer membrane) and imaging approaches confirm its presence in the inner mitochondrial membrane. Through analysis of published evidence and first-principles reasoning, we advance a model of cholesterol trafficking into and out of mitochondria via phospholipids at mitochondria-associated membranes (MAMs), challenging the traditional view of protein-driven transport. In this model, cholesterol enters mitochondria alongside phosphatidylserine and exits with phosphatidylethanolamine - either unchanged or in a hydroxylated form after modification by the enzyme CYP27A1. Strong cholesterol-phospholipid binding energies, ∼17 kcal/mol (71.128 kJ/mol), support this lipid-mediated mechanism, suggesting it complements protein-based pathways. Future research should explore how these mechanisms collaborate to regulate mitochondrial cholesterol trafficking. By rethinking cholesterol dynamics, we raise the possibility that cholesterol plays a larger role in mitochondrial biology, influencing membrane-dependent functions like cristae structure, respiratory efficiency and inter-organelle communication. This Perspective also highlights the potential of mitochondria to regulate both dietary and endogenous cholesterol flux and homeostasis across the cell.
Collapse
Affiliation(s)
- Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Shen C, Bandara S, Imanishi SS, Kalra M, Imanishi Y, von Lintig J. Unveiling BCO2 function in macular pigment metabolism: Mitochondrial processing and expression in the primate retina. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159600. [PMID: 39978586 DOI: 10.1016/j.bbalip.2025.159600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
BCO2 (β-carotene oxygenase 2) converts carotenoids into apocarotenoids by oxidative cleavage across double bonds and controls carotenoid homeostasis in vertebrate tissues. In this study, we examined BCO2's expression, localization, and activity in human cell lines and the retina. We generated peptide antibodies directed against primate BCO2 and validated their specificity using recombinant BCO1 (β-carotene oxygenase 1) and BCO2 proteins expressed in bacteria. The antibodies specifically detected human BCO2 by Western blot. In BCO2 expressing HepG2 cells, the antibodies recognized a 65 kDa mitochondrial protein that co-migrated with a recombinant truncated 522-amino-acid BCO2 variant, suggesting post-translational processing of the 579 amino acid long human BCO2 protein. Immunohistochemical analysis of macaque retina sections revealed BCO2 localization in the retinal pigment epithelium, photoreceptor inner segments, plexiform layer, and ganglion cell layer. Co-staining with COX IV indicated a mitochondrial localization of retinal BCO2 within photoreceptor inner segments. Western blot analysis of human donor retinas, separated into central and peripheral regions, identified higher BCO2 expression in the peripheral retina. Enzymatic activity assays demonstrated that BCO2 interacted with Aster proteins that transport carotenoids within cells. Our studies establish BCO2 as a mitochondrial protein expressed in the primate retina, where it likely plays a pivotal role in the metabolism of macular pigments and the maintenance of retinal health.
Collapse
Affiliation(s)
- Chou Shen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Sanae S Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Mahip Kalra
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Ophthalmology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Bandara S, Saadane A, Shen T, Yakovleva D, Banerjee R, Zhang Y, Brown JM, von Lintig J. Distinct pathways for the absorption and metabolism of β-carotene and zeaxanthin in the mouse intestine. J Lipid Res 2025; 66:100758. [PMID: 39971162 PMCID: PMC11957524 DOI: 10.1016/j.jlr.2025.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025] Open
Abstract
Carotenoids, essential nutrients for eye health, are absorbed in the intestine to support vitamin A homeostasis and provide cellular protection. This process involves the lipid transporters scavenger receptor class B type 1 (SR-B1, encoded by Scarb1 gene) and Niemann-Pick C1-Like 1 (NPC1L1), which load these dietary lipids into the plasma membrane of intestinal enterocytes. However, the precise contribution of these transporters to carotenoid absorption, the putative involvement of Aster proteins in their downstream movement, and the interactions with their metabolizing enzymes, β-carotene oxygenase 1 (BCO1) and β-carotene oxygenase 2 (BCO2), remain incompletely understood. Here, we investigated carotenoid metabolism in the mouse intestine using pharmacological and genetic approaches. We observed that ezetimibe, an NPC1L1 inhibitor, reduced zeaxanthin but did not affect β-carotene absorption. Aster-C, highly expressed in enterocytes, bound zeaxanthin in biochemical assays. In mice, Aster-C deficiency led to upregulation of Gramd1b (Aster-B) expression and increased zeaxanthin bioavailability. We further showed that BCO1 directly interacted with membranes to extract β-carotene for retinoid production, indicating that vitamin A production is Aster protein-independent. This observation is consistent with the finding that the intestine-specific transcription factor ISX, the master regulator of vitamin A production, controlled Scarb1 and Bco1 expression but had no effect on Gramd1a, b, or c, encoding Aster proteins in intestinal enterocytes. Together, our study revealed distinct pathways for β-carotene and zeaxanthin absorption and metabolism, offering new insights into carotenoid bioavailability and potential strategies to optimize dietary carotenoid intake for improved eye health.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aicha Saadane
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Tong Shen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daryna Yakovleva
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rakhee Banerjee
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Yanqi Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cancer Biology, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. J Lipid Res 2025; 66:100738. [PMID: 39746449 PMCID: PMC11830314 DOI: 10.1016/j.jlr.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 42 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP-specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Hogan P Bryce-Rogers
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Nienke J Dekker
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Nicolò Camporese
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
6
|
Enduru N, Fernandes BS, Bahrami S, Dai Y, Andreassen OA, Zhao Z. Genetic overlap between Alzheimer's disease and immune-mediated diseases: an atlas of shared genetic determinants and biological convergence. Mol Psychiatry 2024; 29:2447-2458. [PMID: 38499654 DOI: 10.1038/s41380-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The occurrence of immune disease comorbidities in Alzheimer's disease (AD) has been observed in both epidemiological and molecular studies, suggesting a neuroinflammatory basis in AD. However, their shared genetic components have not been systematically studied. Here, we composed an atlas of the shared genetic associations between 11 immune-mediated diseases and AD by analyzing genome-wide association studies (GWAS) summary statistics. Our results unveiled a significant genetic overlap between AD and 11 individual immune-mediated diseases despite negligible genetic correlations, suggesting a complex shared genetic architecture distributed across the genome. The shared loci between AD and immune-mediated diseases implicated several genes, including GRAMD1B, FUT2, ADAMTS4, HBEGF, WNT3, TSPAN14, DHODH, ABCB9, and TNIP1, all of which are protein-coding genes and thus potential drug targets. Top biological pathways enriched with these identified shared genes were related to the immune system and cell adhesion. In addition, in silico single-cell analyses showed enrichment of immune and brain cells, including neurons and microglia. In summary, our results suggest a genetic relationship between AD and the 11 immune-mediated diseases, pinpointing the existence of a shared however non-causal genetic basis. These identified protein-coding genes have the potential to serve as a novel path to therapeutic interventions for both AD and immune-mediated diseases and their comorbidities.
Collapse
Affiliation(s)
- Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brisa S Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shahram Bahrami
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
7
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604041. [PMID: 39091845 PMCID: PMC11291047 DOI: 10.1101/2024.07.22.604041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Hogan P. Bryce-Rogers
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nienke J. Dekker
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nicolo’ Camporese
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
He N, Depta L, Sievers S, Laraia L. Fluorescent probes and degraders of the sterol transport protein Aster-A. Bioorg Med Chem 2024; 103:117673. [PMID: 38518734 DOI: 10.1016/j.bmc.2024.117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Our understanding of sterol transport proteins (STPs) has increased exponentially in the last decades with advances in the cellular and structural biology of these important proteins. However, small molecule probes have only recently been developed for a few selected STPs. Here we describe the synthesis and evaluation of potential proteolysis-targeting chimeras (PROTACs) based on inhibitors of the STP Aster-A. Based on the reported Aster-A inhibitor autogramin-2, ten PROTACs were synthesized. Pomalidomide-based PROTACs functioned as fluorescent probes due to the intrinsic fluorescent properties of the aminophthalimide core, which in some cases was significantly enhanced upon Aster-A binding. Most PROTACs maintained excellent binary affinity to Aster-A, and one compound, NGF3, showed promising Aster-A degradation in cells. The tools developed here lay the foundation for optimizing Aster-A fluorescent probes and degraders and studying its activity and function in vitro and in cells.
Collapse
Affiliation(s)
- Nianzhe He
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Sonja Sievers
- Max Planck Institute of molecular physiology, Otto-Hahn-Strasse 11, Dortmund, Germany
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Ademowo OS, Oyebode O, Edward R, Conway ME, Griffiths HR, Dias IH. Effects of carotenoids on mitochondrial dysfunction. Biochem Soc Trans 2024; 52:65-74. [PMID: 38385583 PMCID: PMC10903474 DOI: 10.1042/bst20230193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Oxidative stress, an imbalance between pro-oxidant and antioxidant status, favouring the pro-oxidant state is a result of increased production of reactive oxygen species (ROS) or inadequate antioxidant protection. ROS are produced through several mechanisms in cells including during mitochondrial oxidative phosphorylation. Increased mitochondrial-derived ROS are associated with mitochondrial dysfunction, an early event in age-related diseases such as Alzheimer's diseases (ADs) and in metabolic disorders including diabetes. AD post-mortem investigations of affected brain regions have shown the accumulation of oxidative damage to macromolecules, and oxidative stress has been considered an important contributor to disease pathology. An increase in oxidative stress, which leads to increased levels of superoxide, hydrogen peroxide and other ROS in a potentially vicious cycle is both causative and a consequence of mitochondrial dysfunction. Mitochondrial dysfunction may be ameliorated by molecules with antioxidant capacities that accumulate in mitochondria such as carotenoids. However, the role of carotenoids in mitigating mitochondrial dysfunction is not fully understood. A better understanding of the role of antioxidants in mitochondrial function is a promising lead towards the development of novel and effective treatment strategies for age-related diseases. This review evaluates and summarises some of the latest developments and insights into the effects of carotenoids on mitochondrial dysfunction with a focus on the antioxidant properties of carotenoids. The mitochondria-protective role of carotenoids may be key in therapeutic strategies and targeting the mitochondria ROS is emerging in drug development for age-related diseases.
Collapse
Affiliation(s)
- Opeyemi Stella Ademowo
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Olubukola Oyebode
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Roshita Edward
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Myra E. Conway
- Biomedical and Clinical Science Research, School of Sciences, University of Derby, Derby U.K
| | - Helen R. Griffiths
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, U.K
| | - Irundika H.K. Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham U.K
| |
Collapse
|
10
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 PMCID: PMC11091651 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas “Margarita Salas”, Spanish National Research Council, Madrid, Spain
| | - Eric A. Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Azhar S, Shen WJ, Hu Z, Kraemer FB. MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis. VITAMINS AND HORMONES 2023; 124:1-37. [PMID: 38408797 DOI: 10.1016/bs.vh.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States.
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
12
|
de Sainte Agathe JM, Pode-Shakked B, Naudion S, Michaud V, Arveiler B, Fergelot P, Delmas J, Keren B, Poirsier C, Alkuraya FS, Tabarki B, Bend E, Davis K, Bebin M, Thompson ML, Bryant EM, Wagner M, Hannibal I, Lenberg J, Krenn M, Wigby KM, Friedman JR, Iascone M, Cereda A, Miao T, LeGuern E, Argilli E, Sherr E, Caluseriu O, Tidwell T, Bayrak-Toydemir P, Hagedorn C, Brugger M, Vill K, Morneau-Jacob FD, Chung W, Weaver KN, Owens JW, Husami A, Chaudhari BP, Stone BS, Burns K, Li R, de Lange IM, Biehler M, Ginglinger E, Gérard B, Stottmann RW, Trimouille A. ARF1-related disorder: phenotypic and molecular spectrum. J Med Genet 2023; 60:999-1005. [PMID: 37185208 PMCID: PMC10579487 DOI: 10.1136/jmg-2022-108803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.
Collapse
Affiliation(s)
| | - Ben Pode-Shakked
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Naudion
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Benoit Arveiler
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Patricia Fergelot
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Jean Delmas
- Pediatric and Prenatal Imaging Department, Centre Hospitalier Universitaire de Bordeaux Groupe hospitalier Pellegrin, Bordeaux, France
| | - Boris Keren
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
| | | | - Fowzan S Alkuraya
- Department of Translational Genomic, Center for Genomic Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military and Medical City, Riyadh, Saudi Arabia
| | - Eric Bend
- PreventionGenetics LLC, Marshfield, Wisconsin, USA
| | - Kellie Davis
- Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Martina Bebin
- UAB Epilepsy Center, The University of Alabama at Birmingham Hospital, Birmingham, Alabama, USA
| | - Michelle L Thompson
- Greg Cooper's Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Emily M Bryant
- Gillette Children's Specialty Healthcare, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Matias Wagner
- Institute of Human Genetics, Technische Universitat Munchen, Munchen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, Neuherberg, Germany
| | - Iris Hannibal
- Department of Pediatrics, University Hospital Munich, Munchen, Germany
| | - Jerica Lenberg
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Martin Krenn
- Department of Neurology, Medizinische Universitat Wien, Wien, Austria
| | - Kristen M Wigby
- Rady Children's Hospital-San Diego, University of California, San Diego, California, USA
| | - Jennifer R Friedman
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Térence Miao
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
- École d'ingénieurs biotechnologies Paris - SupBiotech, Sup'Biotech, Paris, France
| | - Eric LeGuern
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
- ICM, INSERM, Paris, France
| | - Emanuela Argilli
- Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Elliott Sherr
- Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | - Caroline Hagedorn
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munchen, Germany
| | - Katharina Vill
- Fachbereich Neuromuskuläre Erkrankungen und klinische Neurophysiologie, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York City, New York, USA
| | - Kathryn N Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua W Owens
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bimal P Chaudhari
- Divisions of Neonatology, Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brandon S Stone
- Divisions of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Katie Burns
- Sanford Children's Specialty Clinic, Sioux Falls, South Dakota, USA
| | - Rachel Li
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Iris M de Lange
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Margaux Biehler
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals, Strasbourg, France
| | | | - Bénédicte Gérard
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals, Strasbourg, France
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Aurélien Trimouille
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
- Service de Pathologie, University Hospital Centre Bordeaux Pellegrin Hospital Group, Bordeaux, France
| |
Collapse
|
13
|
Fernandes B, Enduru N, Fernandes B, Bahrami S, Dai Y, Andreassen O, Zhao Z. Genetic overlap between Alzheimer's disease and immune-mediated diseases: An atlas of shared genetic determinants and biological convergence. RESEARCH SQUARE 2023:rs.3.rs-3346282. [PMID: 37841839 PMCID: PMC10571609 DOI: 10.21203/rs.3.rs-3346282/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The occurrence of immune disease comorbidities in Alzheimer's disease (AD) has been observed in both epidemiological and molecular studies, suggesting a neuroinflammatory basis in AD. However, their shared genetic components have not been systematically studied. Here, we composed an atlas of the shared genetic associations between 11 immune-mediated diseases and AD by analyzing genome-wide association studies (GWAS) summary statistics. Our results unveiled a significant genetic overlap between AD and 11 individual immune-mediated diseases despite negligible genetic correlations, suggesting a complex shared genetic architecture distributed across the genome. The shared loci between AD and immune-mediated diseases implicated several genes, including GRAMD1B, FUT2, ADAMTS4, HBEGF, WNT3, TSPAN14, DHODH, ABCB9 and TNIP1, all of which are protein-coding genes and thus potential drug targets. Top biological pathways enriched with these identified shared genes were related to the immune system and cell adhesion. In addition, in silico single-cell analyses showed enrichment of immune and brain cells, including neurons and microglia. In summary, our results suggest a genetic relationship between AD and the 11 immune-mediated diseases, pinpointing the existence of a shared however non-causal genetic basis. These identified protein-coding genes have the potential to serve as a novel path to therapeutic interventions for both AD and immune-mediated diseases and their comorbidities.
Collapse
Affiliation(s)
| | | | | | | | - Yulin Dai
- The University of Texas Health Science Center at Houston
| | - Ole Andreassen
- Oslo University Hospital & Institute of Clinical Medicine, University of Oslo
| | - Zhongming Zhao
- The University of Texas Health Science Center at Houston
| |
Collapse
|
14
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
15
|
Mei T, Li Y, Orduña Dolado A, Li Z, Andersson R, Berliocchi L, Rasmussen LJ. Pooled analysis of frontal lobe transcriptomic data identifies key mitophagy gene changes in Alzheimer's disease brain. Front Aging Neurosci 2023; 15:1101216. [PMID: 37358952 PMCID: PMC10288858 DOI: 10.3389/fnagi.2023.1101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background The growing prevalence of Alzheimer's disease (AD) is becoming a global health challenge without effective treatments. Defective mitochondrial function and mitophagy have recently been suggested as etiological factors in AD, in association with abnormalities in components of the autophagic machinery like lysosomes and phagosomes. Several large transcriptomic studies have been performed on different brain regions from AD and healthy patients, and their data represent a vast source of important information that can be utilized to understand this condition. However, large integration analyses of these publicly available data, such as AD RNA-Seq data, are still missing. In addition, large-scale focused analysis on mitophagy, which seems to be relevant for the aetiology of the disease, has not yet been performed. Methods In this study, publicly available raw RNA-Seq data generated from healthy control and sporadic AD post-mortem human samples of the brain frontal lobe were collected and integrated. Sex-specific differential expression analysis was performed on the combined data set after batch effect correction. From the resulting set of differentially expressed genes, candidate mitophagy-related genes were identified based on their known functional roles in mitophagy, the lysosome, or the phagosome, followed by Protein-Protein Interaction (PPI) and microRNA-mRNA network analysis. The expression changes of candidate genes were further validated in human skin fibroblast and induced pluripotent stem cells (iPSCs)-derived cortical neurons from AD patients and matching healthy controls. Results From a large dataset (AD: 589; control: 246) based on three different datasets (i.e., ROSMAP, MSBB, & GSE110731), we identified 299 candidate mitophagy-related differentially expressed genes (DEG) in sporadic AD patients (male: 195, female: 188). Among these, the AAA ATPase VCP, the GTPase ARF1, the autophagic vesicle forming protein GABARAPL1 and the cytoskeleton protein actin beta ACTB were selected based on network degrees and existing literature. Changes in their expression were further validated in AD-relevant human in vitro models, which confirmed their down-regulation in AD conditions. Conclusion Through the joint analysis of multiple publicly available data sets, we identify four differentially expressed key mitophagy-related genes potentially relevant for the pathogenesis of sporadic AD. Changes in expression of these four genes were validated using two AD-relevant human in vitro models, primary human fibroblasts and iPSC-derived neurons. Our results provide foundation for further investigation of these genes as potential biomarkers or disease-modifying pharmacological targets.
Collapse
Affiliation(s)
- Taoyu Mei
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Orduña Dolado
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robin Andersson
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura Berliocchi
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Bandara S, Moon J, Ramkumar S, von Lintig J. ASTER-B regulates mitochondrial carotenoid transport and homeostasis. J Lipid Res 2023; 64:100369. [PMID: 37030626 PMCID: PMC10193236 DOI: 10.1016/j.jlr.2023.100369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
The scavenger receptor class B type 1 (SR-B1) facilitates uptake of cholesterol and carotenoids into the plasma membrane (PM) of mammalian cells. Downstream of SR-B1, ASTER-B protein mediates the nonvesicular transport of cholesterol to mitochondria for steroidogenesis. Mitochondria also are the place for the processing of carotenoids into diapocarotenoids by β-carotene oxygenase-2. However, the role of these lipid transport proteins in carotenoid metabolism has not yet been established. Herein, we showed that the recombinant StART-like lipid-binding domain of ASTER-A and B preferentially binds oxygenated carotenoids such as zeaxanthin. We established a novel carotenoid uptake assay and demonstrated that ASTER-B expressing A549 cells transport zeaxanthin to mitochondria. In contrast, the pure hydrocarbon β-carotene is not transported to the organelles, consistent with its metabolic processing to vitamin A in the cytosol by β-carotene oxygenase-1. Depletion of the PM from cholesterol by methyl-β-cyclodextrin treatment enhanced zeaxanthin but not β-carotene transport to mitochondria. Loss-of-function assays by siRNA in A549 cells and the absence of zeaxanthin accumulation in mitochondria of ARPE19 cells confirmed the pivotal role of ASTER-B in this process. Together, our study in human cell lines established ASTER-B protein as key player in nonvesicular transport of zeaxanthin to mitochondria and elucidated the molecular basis of compartmentalization of the metabolism of nonprovitamin A and provitamin A carotenoids in mammalian cells.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
17
|
Suresh S, Rabbie R, Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov 2023; 13:194-215. [PMID: 36259947 PMCID: PMC9827116 DOI: 10.1158/2159-8290.cd-22-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/16/2023]
Abstract
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Dianne Lumaquin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xinran Tang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Biochemistry and Structural Biology, Cellular and Developmental Biology and Molecular Biology Ph.D. Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Miranda V. Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuxin Zhu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Bandara S, von Lintig J. Aster la vista: Unraveling the biochemical basis of carotenoid homeostasis in the human retina. Bioessays 2022; 44:e2200133. [PMID: 36127289 PMCID: PMC10044510 DOI: 10.1002/bies.202200133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Carotenoids play pivotal roles in vision as light filters and precursor of chromophore. Many vertebrates also display the colorful pigments as ornaments in bare skin parts and feathers. Proteins involved in the transport and metabolism of these lipids have been identified including class B scavenger receptors and carotenoid cleavage dioxygenases. Recent research implicates members of the Aster protein family, also known as GRAM domain-containing (GRAMD), in carotenoid metabolism. These multi-domain proteins facilitate the intracellular movement of carotenoids from their site of cellular uptake by scavenger receptors to the site of their metabolic processing by carotenoid cleavage dioxygenases. We provide a model how the coordinated interplay of these proteins and their differential expression establishes carotenoid distribution patterns and function in tissues, with particular emphasis on the human retina.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Ng MYW, Charsou C, Lapao A, Singh S, Trachsel-Moncho L, Schultz SW, Nakken S, Munson MJ, Simonsen A. The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nat Commun 2022; 13:6283. [PMID: 36270994 PMCID: PMC9586981 DOI: 10.1038/s41467-022-33933-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
During autophagy, cytosolic cargo is sequestered into double-membrane vesicles called autophagosomes. The contributions of specific lipids, such as cholesterol, to the membranes that form the autophagosome, remain to be fully characterized. Here, we demonstrate that short term cholesterol depletion leads to a rapid induction of autophagy and a corresponding increase in autophagy initiation events. We further show that the ER-localized cholesterol transport protein GRAMD1C functions as a negative regulator of starvation-induced autophagy and that both its cholesterol transport VASt domain and membrane binding GRAM domain are required for GRAMD1C-mediated suppression of autophagy initiation. Similar to its yeast orthologue, GRAMD1C associates with mitochondria through its GRAM domain. Cells lacking GRAMD1C or its VASt domain show increased mitochondrial cholesterol levels and mitochondrial oxidative phosphorylation, suggesting that GRAMD1C may facilitate cholesterol transfer at ER-mitochondria contact sites. Finally, we demonstrate that expression of GRAMD family proteins is linked to clear cell renal carcinoma survival, highlighting the pathophysiological relevance of cholesterol transport proteins.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Chara Charsou
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Ana Lapao
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sakshi Singh
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Laura Trachsel-Moncho
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sebastian W. Schultz
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Sigve Nakken
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Michael J. Munson
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.418151.80000 0001 1519 6403Present Address: Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne Simonsen
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| |
Collapse
|
20
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
21
|
Zhang J, Nie J, Sun H, Li J, Andersen JP, Shi Y. De novo labeling and trafficking of individual lipid species in live cells. Mol Metab 2022; 61:101511. [PMID: 35504533 PMCID: PMC9114690 DOI: 10.1016/j.molmet.2022.101511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Lipids exert dynamic biological functions which are determined both by their fatty acyl compositions and spatiotemporal distributions inside the cell. However, it remains a daunting task to investigate any of these features for each of the more than 1000 lipid species due to a lack of a universal labeling method for individual lipid moieties in live cells. Here we report a de novo lipid labeling method for individual lipid species with precise acyl compositions in live cells. The method is based on the principle of de novo lipid remodeling of exogenously added lysolipids with fluorescent acyl-CoA, leading to the re-synthesis of fluorescence-labeled lipids which can be imaged by confocal microscopy. METHODS The cells were incubated with lysolipids and a nitro-benzoxadiazolyl (NBD) labeled acyl-CoA. The newly remodeled NBD-labeled lipids and their subcellular localization were analyzed by confocal imaging in live cells. Thin layer chromatography was carried out to verify the synthesis of NBD-labeled lipids. The mitochondrial trafficking of NBD-labeled lipids was validated in live cells with targeted deletion of phospholipids transporters, including TRIAP1/PRELI protein complex and StarD7. RESULTS Incubation cells with lysolipids and NBD-acyl-CoA successfully labeled major lipid species with precise acyl compositions, including phospholipids, cholesterol esters, and neutral lipids, which can be analyzed by confocal imaging in live cells. In contrast to exogenously labeled lipids, the de novo labeled lipids retained full biological properties of their endogenous counterparts, including subcellular localization, trafficking, and recognition by lipid transporters. This method also uncovered some unexpected features of newly remodeled lipids and their transporters. CONCLUSIONS The de novo lipid labeling method not only provides a powerful tool for functional analysis of individual lipid species and lipid transporters, but also calls for re-evaluation of previously published results using exogenously labeled lipids.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA,Perenna Pharmceuticals Inc., 14785 Omicron Drive, Ste 100, San Antonio, TX, 78245, USA
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China
| | - John-Paul Andersen
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA; Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Carotenoid pigments accumulate in specific patterns in vertebrate tissues and play important roles as colorants, chromophores, and hormone precursors. However, proteins that facilitate transportation of these lipophilic pigments within cells have not been identified. We provide evidence that Aster proteins are key components for this process and show that they bind the pigments with high affinity. We observed in mice that carotenoids accumulate in tissues that express Aster-B and this accumulation can be prevented by enzymatic turnover by the BCO2 protein. Accordingly, we found opposing expression patterns of the Aster-B protein and BCO2 in the human retina that seemingly contribute to the unique carotenoid concentration in the macula lutea. Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.
Collapse
|
23
|
ARF1 with Sec7 domain-dependent GBF1 activates coatomer protein I to support classical swine fever virus entry. J Virol 2022; 96:e0219321. [PMID: 35044210 PMCID: PMC8941923 DOI: 10.1128/jvi.02193-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV), a positive-sense, enveloped RNA virus that belongs to the Flaviviridae family, hijacks cell host proteins for its own replication. We previously demonstrated that Golgi-specific brefeldin A-resistance factor 1 (GBF1), a regulator of intracellular transport, mediates CSFV infection. However, the molecular mechanism by which this protein regulates CSFV proliferation remains unelucidated. In this study, we constructed a series of plasmids expressing GBF1 truncation mutants to investigate their behavior during CSFV infection and found that GBF1 truncation mutants containing the Sec7 domain could rescue CSFV replication in BFA (brefeldin A)- and GCA (Golgicide A)-treated swine umbilical vein endothelial cells (SUVECs), demonstrating that the effect of GBF1 on CSFV infection depended on the activity of guanine nucleotide exchange factor (GEF). Additionally, it was found that ADP ribosylation factors (ARFs), which are known to be activated by the Sec7 domain of GBF1, also regulated CSFV proliferation. Furthermore, we demonstrated that ARF1 is more important for CSFV infection than other ARF members with Sec7 domain dependence. Subsequent experiments established the function of coatomer protein I (COP I), a downstream effector of ARF1, which is also required for CSFV infection by mediating CSFV invasion. Mechanistically, inhibition of COP I function impaired CSFV invasion by inhibiting cholesterol transport to the plasma membrane, and regulating virion transport from early to late endosomes. Collectively, our results suggest that ARF1, with domain-dependent GBF1 Sec7, activates COP I to facilitate CSFV entry into SUVECs. Importance Classical swine fever (CSF), a highly contact infectious disease, caused by the classical swine fever virus (CSFV) infecting domestic pigs or wild boars, has caused huge economic losses to the pig industry. Our previous studies have revealed that GBF1 and class I and II ARFs are required for CSFV proliferation. However, a direct functional link between GBF1, ARF1, and COP I, and the mechanism of the GBF1-ARF1-COP I complex in CSFV infection is still poorly understood. Here, our data support a model in which COP I supports CSFV entry into SUVECs in two different ways, depending on the GBF1-ARF1 function. On the one hand, the GBF1-ARF1-COP I complex mediates cholesterol trafficking to the plasma membrane to support CSFV entry. On the other hand, the GBF1-ARF1-COP I complex mediates CSFV transport from early to late endosomes during the entry steps.
Collapse
|
24
|
Whitmarsh‐Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol‐Inspired Compound Collection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Whitmarsh‐Everiss
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
25
|
Whitmarsh-Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol-Inspired Compound Collection. Angew Chem Int Ed Engl 2021; 60:26755-26761. [PMID: 34626154 DOI: 10.1002/anie.202111639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cholesterol transport proteins regulate a vast array of cellular processes including lipid metabolism, vesicular and non-vesicular trafficking, organelle contact sites, and autophagy. Despite their undoubted importance, the identification of selective modulators of this class of proteins has been challenging due to the structural similarities in the cholesterol-binding site. Herein we report a general strategy for the identification of selective inhibitors of cholesterol transport proteins via the synthesis of a diverse sterol-inspired compound collection. Fusion of a primary sterol fragment to an array of secondary privileged scaffolds led to the identification of potent and selective inhibitors of the cholesterol transport protein Aster-C, which displayed a surprising preference for the unnatural-sterol AB-ring stereochemistry and new inhibitors of Aster-A. We propose that this strategy can and should be applied to any therapeutically relevant sterol-binding protein.
Collapse
Affiliation(s)
- Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci U S A 2021; 118:2107682118. [PMID: 34782454 DOI: 10.1073/pnas.2107682118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3β-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.
Collapse
|
27
|
Zhang L, Yan F, Li L, Fu H, Song D, Wu D, Wang X. New focuses on roles of communications between endoplasmic reticulum and mitochondria in identification of biomarkers and targets. Clin Transl Med 2021; 11:e626. [PMID: 34841708 PMCID: PMC8562589 DOI: 10.1002/ctm2.626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The communication between endoplasmic reticulum (ER) and mitochondria (Mt) plays important roles in maintenance of intra- and extra-cellular microenvironment, metabolisms, signaling activities and cell-cell communication. The present review aims to overview the advanced understanding about roles of ER-Mt structural contacts, molecular interactions and chemical exchanges, signal transmissions and inter-organelle regulations in ER-Mt communication. We address how the ER-Mt communication contributes to the regulation of lipid, amino acid and glucose metabolisms by enzymes, transporters and regulators in the process of biosynthesis. We specially emphasize the importance of deep understanding about molecular mechanisms of ER-Mt communication for identification and development of biology-specific, disease-specific and metabolism-specific biomarkers and therapeutic targets for human diseases. The inhibitors and modulators of the ER-Mt communication are categorized according to therapeutic targets. Rapid development of biotechnologies will provide new insights for spatiotemporally understanding the molecular mechanisms of ER-Mt communication.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Furong Yan
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Liyang Li
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Huirong Fu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Duojiao Wu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineJinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
28
|
Daňhelovská T, Zdražilová L, Štufková H, Vanišová M, Volfová N, Křížová J, Kuda O, Sládková J, Tesařová M. Knock-Out of ACBD3 Leads to Dispersed Golgi Structure, but Unaffected Mitochondrial Functions in HEK293 and HeLa Cells. Int J Mol Sci 2021; 22:ijms22147270. [PMID: 34298889 PMCID: PMC8303370 DOI: 10.3390/ijms22147270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
The Acyl-CoA-binding domain-containing protein (ACBD3) plays multiple roles across the cell. Although generally associated with the Golgi apparatus, it operates also in mitochondria. In steroidogenic cells, ACBD3 is an important part of a multiprotein complex transporting cholesterol into mitochondria. Balance in mitochondrial cholesterol is essential for proper mitochondrial protein biosynthesis, among others. We generated ACBD3 knock-out (ACBD3-KO) HEK293 and HeLa cells and characterized the impact of protein absence on mitochondria, Golgi, and lipid profile. In ACBD3-KO cells, cholesterol level and mitochondrial structure and functions are not altered, demonstrating that an alternative pathway of cholesterol transport into mitochondria exists. However, ACBD3-KO cells exhibit enlarged Golgi area with absence of stacks and ribbon-like formation, confirming the importance of ACBD3 in Golgi stacking. The glycosylation of the LAMP2 glycoprotein was not affected by the altered Golgi structure. Moreover, decreased sphingomyelins together with normal ceramides and sphingomyelin synthase activity reveal the importance of ACBD3 in ceramide transport from ER to Golgi.
Collapse
Affiliation(s)
- Tereza Daňhelovská
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Lucie Zdražilová
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Hana Štufková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Marie Vanišová
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Nikol Volfová
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Ondřej Kuda
- Institute of Physiology, Academy of Sciences of the Czech Republic, 142 00 Prague, Czech Republic;
| | - Jana Sládková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
| | - Markéta Tesařová
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; (T.D.); (L.Z.); (H.Š.); (M.V.); (N.V.); (J.K.); (J.S.)
- Correspondence:
| |
Collapse
|
29
|
Wang K, Zhang W. Mitochondria-associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse 2021; 75:e22196. [PMID: 33559220 DOI: 10.1002/syn.22196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is incurable. The widely accepted amyloid hypothesis failed to produce efficient clinical therapies. In contrast, there is increasing evidence suggesting that the disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) is a critical upstream event of AD pathogenesis. Here, we review MAM's role in some AD symptoms such as plaque formation, tau hyperphosphorylation, synaptic loss, aberrant lipid synthesis, disturbed calcium homeostasis, and abnormal autophagy. At last, we proposed that MAM plays a central role in familial AD (FAD) and sporadic AD (SAD).
Collapse
Affiliation(s)
- Kangrun Wang
- Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenling Zhang
- The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|