1
|
La Rosa F, Guzzardi MA, Pardo-Tendero M, Barone M, Ruocco C, Conti G, Panetta D, Riabitch D, Bernardi S, Giorgetti A, Campani D, Monleon D, Nisoli E, Brigidi P, Iozzo P. Effects of children's microbiota on adipose and intestinal development in sex-matched mice persist into adulthood following a single fecal microbiota transplantation. Mol Metab 2025; 97:102157. [PMID: 40288637 DOI: 10.1016/j.molmet.2025.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The global prevalence of obesity and type 2 diabetes, particularly among children, is rising, yet the long-term impacts of early-life fecal microbiota transplantation (FMT) on metabolic health remain poorly understood. OBJECTIVES To investigate how early-life FMT from children to young, sex-matched mice influences metabolic outcomes and adipose tissue function in later, adult life. METHODS Germ-free mice were colonized with fecal microbiota from either lean children or children with obesity. The impacts on brown adipose tissue (BAT), white adipose tissue (WAT), glucose metabolism, and gut health were analyzed in male and female mice. Microbial communities and metabolite profiles were characterized using sequencing and metabolomics. RESULTS Male mice receiving FMT from obese donors exhibited marked BAT whitening and impaired amino acid and glucose metabolism. In contrast, female recipients developed hyperglycemia, accompanied by gut barrier dysfunction and WAT impairment. Distinct microbial and metabolite profiles were associated with these phenotypes: Collinsella and trimethylamine in females; and Paraprevotella, Collinsella, Lachnospiraceae NK4A136, Bacteroides, Coprobacillus, and multiple metabolites in males. These phenotypic effects persisted despite changes in host environment and diet. CONCLUSIONS Early-life FMT induced long-lasting effects on the metabolic landscape, profoundly affecting adipose tissue function and systemic glucose homeostasis in adulthood. Donor dietary habits correlated with the fecal microbial profiles observed in recipient mice. These findings highlight the critical need for identifying and leveraging beneficial exposures during early development to combat obesity and diabetes.
Collapse
Affiliation(s)
- Federica La Rosa
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Mercedes Pardo-Tendero
- Department of Pathology, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, Blasco Ibañez, 15, 46010, Valencia, Spain.
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Chiara Ruocco
- Center of Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy.
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Daniele Panetta
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Daria Riabitch
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Silvia Bernardi
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| | - Assuero Giorgetti
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, 56124 Pisa, Italy.
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy.
| | - Daniel Monleon
- Department of Pathology, University of Valencia, Health Research Institute INCLIVA/CIBERFES for Frailty and Healthy Aging, Blasco Ibañez, 15, 46010, Valencia, Spain.
| | - Enzo Nisoli
- Center of Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli 32, 20129 Milan, Italy.
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, via Massarenti 9, 40138 Bologna Italy.
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Yang L, Shao Y, Gao T, Bajinka O, Yuan X. Current advances in cancer energy metabolism under dietary restriction: a mini review. Med Oncol 2024; 41:209. [PMID: 39060824 DOI: 10.1007/s12032-024-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
The manipulation of the energy or source of food for cancer cells has attracted significant attention in oncology research. Metabolic reprogramming of the immune system allows for a deeper understanding of cancer cell mechanisms, thereby impeding their progression. A more targeted approach is the restriction of cancer cells through dietary restriction (CR), which deprives cancer cells of the preferred energy sources within the tumor microenvironment, thereby enhancing immune cell efficacy. Although there is a plethora of CR strategies that can be employed to impede cancer progression, there is currently no comprehensive review that delineates the specific dietary restrictions that target the diverse metabolic pathways of cancer cells. This mini-review introduces amino acids as anti-cancer agents and discusses the role of dietary interventions in cancer prevention and treatment. It highlights the potential of a ketogenic diet as a therapeutic approach for cancer, elucidating its distinct mechanisms of action in tumor progression. Additionally, the potential of plant-based diets as anti-cancer agents and the role of polyphenols and vitamins in anti-cancer therapy were also discussed, along with some prospective interventions for CR as anti-tumor progression.
Collapse
Affiliation(s)
- Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Yudian Shao
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China.
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Corsetti G, Romano C, Codenotti S, Giugno L, Pasini E, Fanzani A, Scarabelli T, Dioguardi FS. Intake of Special Amino Acids Mixture Leads to Blunted Murine Colon Cancer Growth In Vitro and In Vivo. Cells 2024; 13:1210. [PMID: 39056792 PMCID: PMC11274386 DOI: 10.3390/cells13141210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer cells require substantial amounts of energy and substrates for their metabolic hyperactivity, enabling the synthesis of new cells at the expense of healthy ones. Preliminary in vitro data suggest that a mix of free essential amino acids (EAA-mix) can promote cancer cell apoptosis by enhancing autophagy. This study aimed to confirm, both in vitro and in vivo, whether EAA intake could influence the development of colon cancer in mice. We investigated changes in cancer proliferation in CT26 cells treated with EAA-mix and in mice fed with EAA-rich modified diets (EAARD) as compared to those on a standard laboratory diet (StD). CT26 cells were injected subcutaneously (s.c.) or intraperitoneally (i.p.). After 21 days, tumors were removed and measured. In vitro data corroborated that EAA-mix impairs cancer growth by inducing apoptosis. In vivo data revealed that mice on StD developed significantly larger (s.c.) and more numerous (i.p.) cancers than those on EAARD. EAA administration appears to influence cancer cell survival with notable antiproliferative properties.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | - Lorena Giugno
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
| | - Evasio Pasini
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.R.); (L.G.); (E.P.)
- Italian Association of Functional Medicine, 20855 Lesmo, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.C.); (A.F.)
| | | | | |
Collapse
|
4
|
Zhang Z, Wang X, Zang J, Lee D, Zhu Q, Chen L. Phenotypic Characteristics and Occurrence Basis of Leaf Necrotic Spots in Response of Weedy Rice to Imazethapyr. PLANTS (BASEL, SWITZERLAND) 2024; 13:1218. [PMID: 38732432 PMCID: PMC11085574 DOI: 10.3390/plants13091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Weedy rice is the most challenging weed species to remove in rice production. We found a novel phenotype of seedling leaves which rapidly generates necrotic spots in response to imidazolinone herbicides in weedy rice, but its influencing factors and formation basis are still unknown. In this study, we used the leaf necrotic spot-producing type of weedy rice as the material. First, leaf necrotic spots were defined as physiological and vacuole-mediated cell necrosis by microscopic examination. The imazethapyr concentration was positively correlated with the degree of necrotic spots occurring, while the action site was in accordance with necrosis using herbicide stability tests combined with fluorescence parameters. Furthermore, transcriptome analysis revealed significant differences in the gene expression of endoplasmic reticulum stress and the lipid metabolism membrane structure damage pathway during necrosis, as confirmed by transmission electron microscopy. The light-temperature test also showed that high temperature and intense light could promote the appearance of necrotic spots. These experimental results are helpful in clarifying the process and basis of imazethapyr in inducing the rapid generation of necrotic spots in rice leaves and providing new insight into understanding the mechanism of response to imidazolinone herbicides and the control of weedy rice.
Collapse
Affiliation(s)
- Zeyu Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Xianyu Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Jianing Zang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Rivera CN, Smith CE, Draper LV, Kee ME, Cook NE, McGovern MR, Watne RM, Wommack AJ, Vaughan RA. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes. J Cell Biochem 2024; 125:e30520. [PMID: 38226684 DOI: 10.1002/jcb.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Carly E Smith
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Lillian V Draper
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Madison E Kee
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
6
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
7
|
Zhang C, Huang G, Yang J, Jiang Y, Huang R, Ye Z, Huang Y, Hu H, Xi X. Overexpression of DBT suppresses the aggressiveness of renal clear cell carcinoma and correlates with immune infiltration. Front Immunol 2023; 14:1197011. [PMID: 37383233 PMCID: PMC10293648 DOI: 10.3389/fimmu.2023.1197011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Conventional therapy for kidney renal clear cell carcinoma (KIRC) is unpromising. The tumor microenvironment (TME) is intimately linked to the invasiveness of a variety of tumor forms, including KIRC. The purpose of this research is to establish the prognostic and immune-related significance of dihydrolipoamide branched chain transacylase E2 (DBT) in individuals with KIRC. In this investigation, we discovered that DBT expression was down-regulated in a range of human malignancies, and low DBT expression in KIRC was linked to higher-level clinicopathological characteristics as well as a poor prognosis for KIRC patients. Based on the findings of univariate and multivariate Cox regression analyses, DBT might be employed as an independent prognostic factor in KIRC patients. Furthermore, we developed a nomogram to better investigate DBT's predictive usefulness. To confirm DBT expression, we examined KIRC cell lines using RT-qPCR and Western blotting. We also examined the role of DBT in KIRC using colony formation, CCK-8, EdU, transwell, and wound healing assays. We discovered that plasmid-mediated overexpression of DBT in KIRC cells slowed cell proliferation and decreased migration and invasion. Multiple enrichment analyses revealed that DBT may be involved in processes and pathways related to immunotherapy and drug metabolism. We computed the immune infiltration score and discovered that the immunological score and the ESTIMATE score were both greater in the DBT low expression group. According to the CIBERSORT algorithm, DBT seems to promote anti-cancer immune responses in KIRC by activating M1 macrophages, mast cells, and dendritic cells while inhibiting regulatory T cells. Finally, in KIRC, DBT expression was found to be highly linked to immunological checkpoints, targeted medicines, and immunotherapeutic agents. Our findings suggest that DBT is a distinct predictive biomarker for KIRC patients, playing a significant role in the TME of KIRC and serving as a reference for the selection of targeted treatment and immunotherapy.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiale Yang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Jiang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfeng Ye
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yawei Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Zhao Z, Wang X, Lu M, Gao Y. Rosuvastatin Improves Endothelial Dysfunction in Diabetes by Normalizing Endoplasmic Reticulum Stress via Calpain-1 Inhibition. Curr Pharm Des 2023; 29:2579-2590. [PMID: 37881071 DOI: 10.2174/0113816128250494231016065438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Rosuvastatin contributes to the improvement of vascular complications in diabetes, but the protective mechanisms remain unclear. The aim of the present study was to investigate the effect and mechanism of rosuvastatin on endothelial dysfunction induced by diabetes. METHODS Calpain-1 knockout (Capn1 EK684-/-) and C57BL/6 mice were intraperitoneally injected with STZ to induce type 1 diabetes. Human umbilical vein endothelial cells (HUVECs) were incubated with high glucose in this study. The function of isolated vascular rings, apoptosis, and endoplasmic reticulum stress (ERS) indicators were measured in this experiment. RESULTS The results showed that rosuvastatin (5 mg/kg/d) and calpain-1 knockout improved impaired vasodilation in an endothelial-dependent manner, and this effect was abolished by an ERS inducer. Rosuvastatin administration inhibited calpain-1 activation and ERS induced by high glucose, as well as apoptosis and oxidative stress both in vivo and in vitro. In addition, an ERS inducer (tunicamycin) offset the beneficial effect of rosuvastatin on endothelial dysfunction and ERS, which was accompanied by increased calpain-1 expression. The ERS inhibitor showed a similar improvement in endothelial dysfunction with rosuvastatin but could not increase the improvement in endothelial function of rosuvastatin. CONCLUSION These results suggested that rosuvastatin improves endothelial dysfunction by suppressing calpain- 1 and normalizing ERS, subsequently decreasing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Zhao Zhao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinpeng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Liaoning Provincial Key Laboratory of Cardiovascular Drugs, Jinzhou Medical University, Jinzhou, China
| | - Yuxia Gao
- Cardiovascular Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022; 14:5691. [PMID: 36428783 PMCID: PMC9688864 DOI: 10.3390/cancers14225691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Rapid tumor growth requires elevated biosynthetic activity, supported by metabolic rewiring occurring both intrinsically in cancer cells and extrinsically in the cancer host. The Warburg effect is one such example, burning glucose to produce a continuous flux of biomass substrates in cancer cells at the cost of energy wasting metabolic cycles in the host to maintain stable glycemia. Amino acid (AA) metabolism is profoundly altered in cancer cells, which use AAs for energy production and for supporting cell proliferation. The peculiarities in cancer AA metabolism allow the identification of specific vulnerabilities as targets of anti-cancer treatments. In the current review, specific approaches targeting AAs in terms of either deprivation or supplementation are discussed. Although based on opposed strategies, both show, in vitro and in vivo, positive effects. Any AA-targeted intervention will inevitably impact the cancer host, who frequently already has cachexia. Cancer cachexia is a wasting syndrome, also due to malnutrition, that compromises the effectiveness of anti-cancer drugs and eventually causes the patient's death. AA deprivation may exacerbate malnutrition and cachexia, while AA supplementation may improve the nutritional status, counteract cachexia, and predispose the patient to a more effective anti-cancer treatment. Here is provided an attempt to describe the AA-based therapeutic approaches that integrate currently distant points of view on cancer-centered and host-centered research, providing a glimpse of several potential investigations that approach cachexia as a unique cancer disease.
Collapse
Affiliation(s)
- Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Claudia Fornelli
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Turin, Italy
| |
Collapse
|
10
|
Bai X, Li S, Liu X, An H, Kang X, Guo S. Caffeic Acid, an Active Ingredient in Coffee, Combines with DOX for Multitarget Combination Therapy of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8326-8337. [PMID: 35772797 DOI: 10.1021/acs.jafc.2c03009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adjuvant diet therapy is an important means of comprehensive treatment of cancer. It is recognized by patients for its high safety, painlessness, and ease to operate. However, the development of adjuvant dietary therapy is limited by unclear targets and unclear anticancer mechanisms. In this work, caffeic acid was found as an inhibitor of TMEM16A with an IC50 of 29.47 ± 3.19 μM by fluorescence quenching and whole-cell patch-clamp experiments. Caffeic acid regulated the proliferation, migration, and apoptosis of lung cancer cells targeting TMEM16A, which was detected by CCK-8, colony formation, wound healing, and Annexin V assays. In addition, molecular docking combined with site-directed mutagenesis confirmed that the binding sites of caffeic acid to TMEM16A were D439, E448, and R753. Western blot results indicated that caffeic acid regulated the growth of lung cancer through the MAPK pathway. In vitro experiments showed that the inhibitory effect of caffeic acid combined with hydroxydaunorubicin (DOX) on lung cancer cell growth was better than a double concentration of any single dose. In vivo pharmacokinetic experiments and tumor xenograft experiments indicated that the combination of 5.4 mg/kg caffeic acid and 4.1 mg/kg DOX achieved 85.6% tumor suppression rate and offset the side effects. Therefore, caffeic acid is a safe and efficient antitumor active ingredient of food that can enhance the antitumor effect of DOX.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|