1
|
Mohammad A, Ruegsegger GN, Olver TD, MacPherson REK. Gestational physical activity alters offspring brain APP processing in an age-specific manner. Appl Physiol Nutr Metab 2024; 49:1507-1516. [PMID: 39038365 DOI: 10.1139/apnm-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Maternal exercise is beneficial for offspring brain development. Amyloid precursor protein (APP) influences neurogenesis and synaptic plasticity. Cleavage products of APP are implicated in the proliferation of neural progenitor cells and neuronal network development. Our study aimed to investigate differences in APP processing in active or sedentary offspring of dams who were exposed to voluntary wheel running with and without a western diet throughout gestation. Female Wistar rats (7-8 weeks old) were fed a normal chow or western diet and randomized into voluntary wheel run or sedentary conditions. Dams returned to sedentary conditions post-parturition. The pups were weaned at 6 weeks after which point half of the samples were collected, while the rest of the pups remained on a normal diet, separated into sedentary or voluntary wheel run groups, and collected 12 weeks later. In utero exposure to maternal exercise was associated with higher neuronal nuclear protein, higher soluble APPα and lower soluble APPβ in offspring prefrontal cortex tissue at 6, but not 18 weeks of age. Neuronal nuclear protein is exclusive to mature neurons implying that offspring of mothers who exercised could have more neuron maturation potentially influenced by the higher APPα content at this early developmental stage. The voluntary wheel run offspring groups had a higher mature/pro brain derived neurotrophic factor ratio compared to the sedentary counterparts. The maternal effects were isolated to the juvenile 6-week-old pups, while the differences in the adult offspring were caused by their own exercise status.
Collapse
Affiliation(s)
- A Mohammad
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| | - G N Ruegsegger
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Colombia, MO, US
| | - T D Olver
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - R E K MacPherson
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| |
Collapse
|
2
|
Xu Y, Alves-Wagner AB, Inada H, Firouzjah SD, Osana S, Amir MS, Conlin RH, Hirshman MF, Nozik ES, Goodyear LJ, Nagatomi R, Kusuyama J. Placenta-derived SOD3 deletion impairs maternal behavior via alterations in FGF/FGFR-prolactin signaling axis. Cell Rep 2024; 43:114789. [PMID: 39325622 PMCID: PMC11639441 DOI: 10.1016/j.celrep.2024.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hitoshi Inada
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sepideh D Firouzjah
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya 60132, Indonesia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, the University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
3
|
Zhang L, Zhang S, Zou W, Hu Y, Gao Y, Zhang J, Zheng J. Maternal high-fat diet regulates offspring hepatic ABCG5 expression and cholesterol metabolism via the gut microbiota and its derived butyrate. Clin Sci (Lond) 2024; 138:1039-1054. [PMID: 39136693 DOI: 10.1042/cs20240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Shixuan Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing 100034, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Bønnelycke J, Larsen M, Jespersen AP. Pregnancy As Window of Opportunity? A Danish RCT on Physical Activity During Pregnancy. Med Anthropol 2024; 43:441-454. [PMID: 39046335 DOI: 10.1080/01459740.2024.2376007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Pregnancy is seen as a window of opportunity for health interventions, with the potential to produce long-term health changes for mother and child. The RCT FitMum investigates the effects of different regimes of physical activity during pregnancy. We suggest that rather than hitting a window of opportunity, the trial works in choreography with different timescapes through the processes of management of time. These timescapes are characterized by linear progression and futurity, alongside composite, complex time. We reconceptualize the intervention as a navigation of flows and passages in collective efforts, providing a situated and sustainable approach to interventions.
Collapse
Affiliation(s)
- Julie Bønnelycke
- Department of Applied Business Research University College Lillebælt & University of Copenhagen, Odense, Denmark
| | - Maria Larsen
- Zealand University Hospital & University of Copenhagen, Koge, Denmark
| | | |
Collapse
|
5
|
Vainshtein A, Slavin MB, Cheng AJ, Memme JM, Oliveira AN, Perry CGR, Abdul-Sater AA, Belcastro AN, Riddell MC, Triolo M, Haas TL, Roudier E, Hood DA. Scientific meeting report: International Biochemistry of Exercise 2022. J Appl Physiol (1985) 2022; 133:1381-1393. [PMID: 36356257 DOI: 10.1152/japplphysiol.00475.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exercise is one of the only nonpharmacological remedies known to counteract genetic and chronic diseases by enhancing health and improving life span. Although the many benefits of regular physical activity have been recognized for some time, the intricate and complex signaling systems triggered at the onset of exercise have only recently begun to be uncovered. Exercising muscles initiate a coordinated, multisystemic, metabolic rewiring, which is communicated to distant organs by various molecular mediators. The field of exercise research has been expanding beyond the musculoskeletal system, with interest from industry to provide realistic models and exercise mimetics that evoke a whole body rejuvenation response. The 18th International Biochemistry of Exercise conference took place in Toronto, Canada, from May 25 to May 28, 2022, with more than 400 attendees. Here, we provide an overview of the most cutting-edge exercise-related research presented by 66 speakers, focusing on new developments in topics ranging from molecular and cellular mechanisms of exercise adaptations to exercise therapy and management of disease and aging. We also describe how the manipulation of these signaling pathways can uncover therapeutic avenues for improving human health and quality of life.
Collapse
Affiliation(s)
| | - Mikhaela B Slavin
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Arthur J Cheng
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Jonathan M Memme
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ashley N Oliveira
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Angelo N Belcastro
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Michael C Riddell
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Matthew Triolo
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Tara L Haas
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - Emilie Roudier
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| | - David A Hood
- Faculty of Health, School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), York University, Toronto, Ontario, Canada
| |
Collapse
|