1
|
Chen YY, Liu CX, Liu HX, Wen SY. The Emerging Roles of Vacuolar-Type ATPase-Dependent Lysosomal Acidification in Cardiovascular Disease. Biomolecules 2025; 15:525. [PMID: 40305271 PMCID: PMC12024769 DOI: 10.3390/biom15040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a multi-subunit enzyme complex that maintains lysosomal acidification, a critical process for cellular homeostasis. By controlling the pH within lysosomes, V-ATPase contributes to overall cellular homeostasis, helping to maintain a balance between the degradation and synthesis of cellular components. Dysfunction of V-ATPase impairs lysosomal acidification, leading to the accumulation of undigested materials and contributing to various diseases, including cardiovascular diseases (CVDs) like atherosclerosis and myocardial disease. Furthermore, V-ATPase's role in lysosomal function suggests potential therapeutic strategies targeting this enzyme complex to mitigate cardiovascular disease progression. Understanding the mechanisms by which V-ATPase influences cardiovascular pathology is essential for developing novel treatments aimed at improving outcomes in patients with heart and vascular diseases.
Collapse
Affiliation(s)
- Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Xia Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Jia K, Wang J, Jiang D, Ding X, Zhao Q, Shen D, Qiu Z, Zhang X, Lu C, Qian H, Xia D. Bombyx mori PAT4 gene inhibits BmNPV infection and replication through autophagy. J Invertebr Pathol 2025; 208:108235. [PMID: 39580048 DOI: 10.1016/j.jip.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Proton-assisted amino acid transporter 4 (PAT4) is a member of the solute carrier (SLC) 36 family, which mediates the transmembrane transport of amino acids and their derivatives. However, the function of PAT4 in Bombyx mori is not clear. In this study, BmPAT4 was cloned and identified using PCR technology. Its open reading frame (ORF) includes 1,395 bp, encoding 464 amino acid (Aa). Moreover, the sequence of BmPAT4 has the highest similarity with wild Bombyx.mandarina, Spodoptera frugiperda and Spodoptera litura, and it has ten transmembrane domains. BmPAT4 was localized in the cell membrane and expressed in all tissues of the silkworm. After Bombyx mori nuclear polyhedrosis virus (BmNPV) infection, the expression of BmPAT4 in midgut, hemolymph and fat body was significantly up-regulated. In addition, overexpression of BmPAT4 in BmN cells could significantly inhibit the proliferation of BmNPV, and the expression of several genes in autophagy pathway decreased significantly. On the contrary, down-regulation of BmPAT4 expression by RNA interference can promote BmNPV replication and proliferation, and the expression of key genes in autophagy pathway is significantly increased. This is the first time to report that BmPAT4 has an antiviral effect in silkworm. Moreover, the silkworm activates BmTORC1 via BmPAT4, which inhibits autophagy in silkworm cells, resulting in a lack of energy and raw materials for BmNPV infection and replication in cells.
Collapse
Affiliation(s)
- Kaifang Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiangrui Ding
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Cheng Lu
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Sun Y, Lu X, Wang M. The different functions of V-ATPase subunits in adipocyte differentiation and their expression in obese mice. Biochem Biophys Res Commun 2024; 733:150733. [PMID: 39332157 DOI: 10.1016/j.bbrc.2024.150733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Obesity is a significant global public health issue linked to numerous chronic diseases, including diabetes, cardiovascular conditions, and various cancers. The vacuolar H + ATPase, a multi-subunit enzyme complex involved in maintaining pH balance, has been implicated in various health conditions, including obesity-related diseases. METHOD This study conducts a comprehensive analysis of V-ATPase subunits' roles in adipogenesis within the context of obesity, using knockdown and RNAseq technologies. RESULT This study conducts a comprehensive analysis of V-ATPase subunits' roles in adipogenesis, highlighting specific subunits, v0d2 and v1a, which show significant expression alterations. Our findings reveal that v1a plays a crucial role in adipocyte differentiation through pathways related to steroid and cholesterol metabolism. CONCLUSION This study provides a comprehensive analysis of the roles played by V-ATPase subunits in adipogenesis and finds the critical role of V-ATPase subunits, particularly v1a, in the differentiation of adipocytes and their potential impact on obesity.
Collapse
Affiliation(s)
- Yuan Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xifeng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China; Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
4
|
Liu H, Xie Z, Gao X, Wei L, Li M, Lin Z, Huang X. Lysosomal dysfunction-derived autophagy impairment of gingival epithelial cells in diabetes-associated periodontitis with altered protein acetylation. Cell Signal 2024; 121:111273. [PMID: 38950874 DOI: 10.1016/j.cellsig.2024.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/08/2024] [Accepted: 06/23/2024] [Indexed: 07/03/2024]
Abstract
Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.
Collapse
Affiliation(s)
- Hui Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Linhesheng Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Mengdi Li
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China.
| |
Collapse
|
5
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
6
|
Carrasco Del Amor A, Bautista RH, Ussar S, Cristobal S, Urbatzka R. Insights into the mechanism of action of the chlorophyll derivative 13- 2-hydroxypheophytine a on reducing neutral lipid reserves in zebrafish larvae and mice adipocytes. Eur J Pharmacol 2023; 960:176158. [PMID: 37898286 DOI: 10.1016/j.ejphar.2023.176158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Obesity is a worldwide epidemic and natural products may hold promise in its treatment. The chlorophyll derivative 13-2-hydroxypheophytine (hpa) was isolated in a screen with zebrafish larvae to identify lipid reducing molecules from cyanobacteria. However, the mechanisms underlying the lipid-reducing effects of hpa in zebrafish larvae remain poorly understood. Thus, investigating the mechanism of action of hpa and validation in other model organisms such as mice represents important initial steps. In this study, we identified 14 protein targets of hpa in zebrafish larvae by thermal proteome profiling, and selected two targets (malate dehydrogenase and pyruvate kinase) involved in cellular metabolism for further validation by enzymatic measurements. Our findings revealed a dose-dependent inhibition of pyruvate kinase by hpa exposure using protein extracts of zebrafish larvae in vitro, and in exposure experiments from 3 to 5 days post fertilization in vivo. Analysis of untargeted metabolomics of zebrafish larvae detected 940 mass peaks (66 increased, 129 decreased) and revealed that hpa induced the formation of various phospholipid species (phosphoinositol, phosphoethanolamine, phosphatidic acid). Inter-species validation showed that brown adipocytes exposed to hpa significantly reduced the size of lipid droplets, increased maximal mitochondrial respiratory capacity, and the expression of PPARy during adipocyte differentiation. In line with our data, previous work described that reduced pyruvate kinase activity lowered hepatic lipid content via reduced pyruvate and citrate, and improved mitochondrial function via phospholipids. Thus, our data provide new insights into the molecular mechanism underlying the lipid reducing activities of hpa in zebrafish larvae, and species overlapping functions in reduction of lipids.
Collapse
Affiliation(s)
- Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden.
| | - Rene Hernandez Bautista
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocyte and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany.
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, SE-58185, Linköping, Sweden; Ikerbasque, Basque Foundation for Sciences, Department of Physiology, Faculty of Medicine, and Nursing, University of the Basque Country UPV/EHU, Spain.
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
7
|
Shu H, Zhang J, Cheng D, Zhao X, Ma Y, Zhang C, Zhang Y, Jia Z, Liu Z. The Role of Proton-Coupled Amino Acid Transporter 2 (SLC36A2) in Cold-Induced Thermogenesis of Mice. Nutrients 2023; 15:3552. [PMID: 37630739 PMCID: PMC10458080 DOI: 10.3390/nu15163552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Brown adipocytes mainly utilize glucose and fatty acids to produce energy, which play key roles in thermogenesis. Furthermore, brown adipocytes also utilize other substrates, such as amino acids, for energy expenditure in various conditions. Here, we report the new physiological roles of proton-coupled amino acid transporters, SLC36A2 and SLC36A3, on global energy metabolism. The relative mRNA expression levels of both Slc36a2 and Slc36a3 were all highest in brown adipose tissue. We then generated global Slc36a2 and Slc36a3 knockout mice to investigate their functions in metabolism. Neither loss of Slc36a2 nor Slc36a3 affected the body weight and body composition of the mice. Slc36a2 knockout mice exhibited increased oxygen consumption during the daytime. After cold treatment, inhibition of Slc36a2 significantly decreased the mass of brown adipose tissue compared to wildtype mice, while it lowered the expression level of Cpt1a. Moreover, the serum lipid levels and liver mass were also decreased in Slc36a2 knockout mice after cold treatment. On the contrary, Slc36a3 knockout impaired glucose tolerance and up-regulated serum LDL-cholesterol concentration. Thus, SLC36A2 and SLC36A3 play central and different roles in the energy metabolism of the mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhihao Jia
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China; (H.S.); (J.Z.); (Y.M.); (Y.Z.)
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou 215123, China; (H.S.); (J.Z.); (Y.M.); (Y.Z.)
| |
Collapse
|