1
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
2
|
Chiu CF, Lin HR, Su YH, Chen HA, Hung SW, Huang SY. The Role of Dicer Phosphorylation in Gemcitabine Resistance of Pancreatic Cancer. Int J Mol Sci 2024; 25:11797. [PMID: 39519347 PMCID: PMC11545961 DOI: 10.3390/ijms252111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Dicer, a cytoplasmic type III RNase, is essential for the maturation of microRNAs (miRNAs) and is implicated in cancer progression and chemoresistance. Our previous research demonstrated that phosphorylation of Dicer at S1016 alters miRNA maturation and glutamine metabolism, contributing to gemcitabine (GEM) resistance in pancreatic ductal adenocarcinoma (PDAC). In this study, we focused on the role of Dicer phosphorylation at S1728/S1852 in GEM-resistant PDAC cells. Using shRNA to knock down Dicer in GEM-resistant PANC-1 (PANC-1 GR) cells, we examined cell viability through MTT and clonogenic assays. We also expressed phosphomimetic Dicer 2E (S1728E/S1852E) and phosphomutant Dicer 2A (S1728A/S1852A) to evaluate their effects on GEM resistance and metabolism. Our results show that phosphorylation at S1728/S1852 promotes GEM resistance by reprogramming glutamine metabolism. Specifically, phosphomimetic Dicer 2E increased intracellular glutamine, driving pyrimidine synthesis and raising dCTP levels, which compete with gemcitabine's metabolites. This metabolic shift enhanced drug resistance. In contrast, phosphomutant Dicer 2A reduced GEM resistance. These findings highlight the importance of Dicer phosphorylation in regulating metabolism and drug sensitivity, offering insights into potential therapeutic strategies for overcoming GEM resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; (C.-F.C.); (H.-R.L.)
- Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.S.); (H.-A.C.)
| | - Hui-Ru Lin
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; (C.-F.C.); (H.-R.L.)
| | - Yen-Hao Su
- Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.S.); (H.-A.C.)
| | - Hsin-An Chen
- Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-H.S.); (H.-A.C.)
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu City 300, Taiwan;
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; (C.-F.C.); (H.-R.L.)
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Mok ETY, Chitty JL, Cox TR. miRNAs in pancreatic cancer progression and metastasis. Clin Exp Metastasis 2024; 41:163-186. [PMID: 38240887 PMCID: PMC11213741 DOI: 10.1007/s10585-023-10256-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/06/2023] [Indexed: 06/30/2024]
Abstract
Small non-coding RNA or microRNA (miRNA) are critical regulators of eukaryotic cells. Dysregulation of miRNA expression and function has been linked to a variety of diseases including cancer. They play a complex role in cancers, having both tumour suppressor and promoter properties. In addition, a single miRNA can be involved in regulating several mRNAs or many miRNAs can regulate a single mRNA, therefore assessing these roles is essential to a better understanding in cancer initiation and development. Pancreatic cancer is a leading cause of cancer death worldwide, in part due to the lack of diagnostic tools and limited treatment options. The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is characterised by major genetic mutations that drive cancer initiation and progression. The regulation or interaction of miRNAs with these cancer driving mutations suggests a strong link between the two. Understanding this link between miRNA and PDAC progression may give rise to novel treatments or diagnostic tools. This review summarises the role of miRNAs in PDAC, the downstream signalling pathways that they play a role in, how these are being used and studied as therapeutic targets as well as prognostic/diagnostic tools to improve the clinical outcome of PDAC.
Collapse
Affiliation(s)
- Ellie T Y Mok
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- Matrix & Metastasis Lab, Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Caputo C, Falco M, Grimaldi A, Lombardi A, Miceli CC, Cocule M, Montella M, Pompella L, Tirino G, Campione S, Tammaro C, Cossu A, Fenu Pintori G, Maioli M, Coradduzza D, Savarese G, Fico A, Ottaiano A, Conzo G, Tathode MS, Ciardiello F, Caraglia M, De Vita F, Misso G. Identification of Tissue miRNA Signatures for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:824. [PMID: 38398215 PMCID: PMC10887387 DOI: 10.3390/cancers16040824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a neoplasm of the gastrointestinal tract, is the most common pancreatic malignancy (90%) and the fourth highest cause of cancer mortality worldwide. Surgery intervention is currently the only strategy able to offer an advantage in terms of overall survival, but prognosis remains poor even for operated patients. Therefore, the development of robust biomarkers for early diagnosis and prognostic stratification in clinical practice is urgently needed. In this work, we investigated deregulated microRNAs (miRNAs) in tissues from PDAC patients with high (G3) or low (G2) histological grade and with (N+) or without (N-) lymph node metastases. miRNA expression profiling was performed by a comprehensive PCR array and subsequent validation by RT-qPCR. The results showed a significant increase in miR-1-3p, miR-31-5p, and miR-205-5p expression in G3 compared to G2 patients (** p < 0.01; *** p < 0.001; *** p < 0.001). miR-518d-3p upregulation and miR-215-5p downregulation were observed in N+ compared to N- patients. A statistical analysis performed using OncomiR program showed the significant involvement (p < 0.05) of two miRNAs (miR-31 and miR-205) in the histological grade of PDAC patients. Also, an expression analysis in PDAC patients showed that miR-31 and miR-205 had the highest expression at grade 3 compared with normal and other tumor grades. Overall, survival plots confirmed that the overexpression of miR-31 and miR-205 was significantly correlated with decreased survival in TCGA PDAC clinical samples. A KEGG pathway analysis showed that all three miRNAs are involved in the regulation of multiple pathways, including the Hippo signaling, adherens junction and microRNAs in cancer, along with several target genes. Based on in silico analysis and experimental validation, our study suggests the potential role of miR-1-3p, miR-31-5p, and miR-205-5p as useful clinical biomarkers and putative therapeutic targets in PDAC, which should be further investigated to determine the specific molecular processes affected by their aberrant expression.
Collapse
Affiliation(s)
- Carlo Caputo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Anna Grimaldi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Angela Lombardi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Chiara Carmen Miceli
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Mariateresa Cocule
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Marco Montella
- Department of Mental and Physical Health and Preventive Medicine, UOC Pathological Anatomy, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Luca Pompella
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Giuseppe Tirino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Severo Campione
- Division of Anatomic Pathology, A.O.R.N. Antonio Cardarelli, 80131 Naples, Italy;
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Grazia Fenu Pintori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
| | - Giovanni Savarese
- AMES Center, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (G.S.); (A.F.)
| | - Antonio Fico
- AMES Center, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (G.S.); (A.F.)
| | - Alessandro Ottaiano
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, National Cancer Institute, 80131 Naples, Italy;
| | - Giovanni Conzo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| |
Collapse
|
6
|
Kozłowska M, Śliwińska A. The Link between Diabetes, Pancreatic Tumors, and miRNAs-New Players for Diagnosis and Therapy? Int J Mol Sci 2023; 24:10252. [PMID: 37373398 DOI: 10.3390/ijms241210252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite significant progress in medicine, pancreatic cancer is one of the most tardily diagnosed cancer and is consequently associated with a poor prognosis and a low survival rate. The asymptomatic clinical picture and the lack of relevant diagnostic markers for the early stages of pancreatic cancer are believed to be the major constraints behind an accurate diagnosis of this disease. Furthermore, underlying mechanisms of pancreatic cancer development are still poorly recognized. It is well accepted that diabetes increases the risk of pancreatic cancer development, however the precise mechanisms are weakly investigated. Recent studies are focused on microRNAs as a causative factor of pancreatic cancer. This review aims to provide an overview of the current knowledge of pancreatic cancer and diabetes-associated microRNAs, and their potential in diagnosis and therapy. miR-96, miR-124, miR-21, and miR-10a were identified as promising biomarkers for early pancreatic cancer prediction. miR-26a, miR-101, and miR-200b carry therapeutic potential, as they not only regulate significant biological pathways, including the TGF-β and PI3K/AKT, but their re-expression contributes to the improvement of the prognosis by reducing invasiveness or chemoresistance. In diabetes, there are also changes in the expression of microRNAs, such as in miR-145, miR-29c, and miR-143. These microRNAs are involved, among others, in insulin signaling, including IRS-1 and AKT (miR-145), glucose homeostasis (hsa-miR-21), and glucose reuptake and gluconeogenesis (miR-29c). Although, changes in the expression of the same microRNAs are observed in both pancreatic cancer and diabetes, they exert different molecular effects. For example, miR-181a is upregulated in both pancreatic cancer and diabetes mellitus, but in diabetes it contributes to insulin resistance, whereas in pancreatic cancer it promotes tumor cell migration, respectively. To conclude, dysregulated microRNAs in diabetes affect crucial cellular processes that are involved in pancreatic cancer development and progression.
Collapse
Affiliation(s)
- Małgorzata Kozłowska
- Student Scientific Society of Civilization Diseases, Medical University of Lodz, 251 Pomorska, 92-213 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
7
|
Fu S, Xu S, Zhang S. The role of amino acid metabolism alterations in pancreatic cancer: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188893. [PMID: 37015314 DOI: 10.1016/j.bbcan.2023.188893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Shenao Fu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shaokang Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
8
|
Liu C, Li C, Liu Y. The role of metabolic reprogramming in pancreatic cancer chemoresistance. Front Pharmacol 2023; 13:1108776. [PMID: 36699061 PMCID: PMC9868425 DOI: 10.3389/fphar.2022.1108776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is characterized by hidden onset, high malignancy, and early metastasis. Although a few cases meet the surgical indications, chemotherapy remains the primary treatment, and the resulting chemoresistance has become an urgent clinical problem that needs to be solved. In recent years, the importance of metabolic reprogramming as one of the hallmarks of cancers in tumorigenesis has been validated. Metabolic reprogramming involves glucose, lipid, and amino acid metabolism and interacts with oncogenes to affect the expression of key enzymes and signaling pathways, modifying the tumor microenvironment and contributing to the occurrence of drug tolerance. Meanwhile, the mitochondria are hubs of the three major nutrients and energy metabolisms, which are also involved in the development of drug resistance. In this review, we summarized the characteristic changes in metabolism during the progression of pancreatic cancer and their impact on chemoresistance, outlined the role of the mitochondria, and summarized current studies on metabolic inhibitors.
Collapse
|