1
|
Liu Z, Wang S, Wang W, Lv R, Sun C. Necroptosis in obesity: a complex cell death event. Apoptosis 2025; 30:466-487. [PMID: 39702812 DOI: 10.1007/s10495-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Obesity is an exceedingly prevalent and frequent health issue in today's society. Fat deposition is accompanied by low-grade inflammation in fat tissue and throughout the body, leading to metabolic disorders that ultimately promote the onset of obesity-related diseases. The development of obesity is accompanied by cell death events such as apoptosis as well as pyroptosis, however, the role of necroptosis in obesity has been widely reported in recent years. Necroptosis, a mode of cell death distinct from apoptosis and necrosis, is associated with developing many inflammatory conditions and their associated diseases. It also exhibits modulation of apoptosis and pyroptosis. It is morphologically similar to necroptosis, characterized by the inhibition of caspase-8, the formation of membrane pores, and the subsequent rupture of the plasma membrane. This paper focuses on the key pathways and molecules of necroptosis, exploring its connections with apoptosis and pyroptosis, and its implications in obesity. This paper posits that the modulation of necroptosis-related targets may represent a novel potential therapeutic avenue for the prevention and treatment of obesity-induced systemic inflammatory responses, and provides a synopsis of potential molecular targets that may prove beneficial in obesity-associated inflammatory diseases.
Collapse
Affiliation(s)
- Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Jana S, Maqbool M, Yan X, Jakobsson JE, Lee AC, Liow JS, Zoghbi SS, Wu S, Long P, Innis RB, Telu S, Pike VW. Development and Evaluation in Rat and Monkey of a Candidate Homochiral Radioligand for PET Studies of Brain Receptor Interacting Protein Kinase 1: [ 18F]( S)-1-(5-(3-Fluorophenyl)-4,5-dihydro-1 H-pyrazol-1-yl)-2,2-dimethylpropan-1-one. ACS Chem Neurosci 2025; 16:203-222. [PMID: 39745023 DOI: 10.1021/acschemneuro.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Receptor interacting protein kinase 1 (RIPK1) crucially upregulates necroptosis and is a key driver of inflammation. An effective PET radioligand for imaging brain RIPK1 would be useful for further exploring the role of this enzyme in neuroinflammation and for assisting drug discovery. Here, we report our progress on developing a PET radioligand for RIPK1 based on the phenyl-1H-dihydropyrazole skeleton of a lead RIPK1 inhibitor, GSK'963. The most potent inhibitor from a small structure-activity relationship study,(S)-1-(5-(3-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2,2-dimethylpropan-1-one ((S)-SJ1058 or (S)-5d), was labeled with no-carrier-added fluorine-18 (t1/2 = 109.8 min) from a homochiral meta-tri-n-butylstannane precursor [(S)-11c] in 10-15% formulated yields. The lipophilicity measured for [18F](S)-SJ1058 was moderate (log D7.4 = 3.00) and conducive to good brain permeability. PET scans with [18F](S)-SJ1058 in healthy monkeys under baseline and preblock conditions with a RIPK1 inhibitor, either Nec-1s or GSK'963, demonstrated high peak radioactivity uptake in the brain (3.1-3.9 SUV) but no evidence of in vivo RIPK1-specific binding. Moreover, [18F](S)-SJ1058 did not detect neuroinflammation in rats on day 1 and day 8 after systemic lipopolysaccharide administration. We conclude that [18F](S)-SJ1058 is unpromising for imaging human brain RIPK1 in neuroinflammation. Higher-affinity radioligands may be needed for this purpose.
Collapse
Affiliation(s)
- Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Mudasir Maqbool
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Jimmy E Jakobsson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Adrian C Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Shawn Wu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Priscilla Long
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Veli Ö, Kaya Ö, Varanda AB, Hildebrandt X, Xiao P, Estornes Y, Poggenberg M, Wang Y, Pasparakis M, Bertrand MJM, Walczak H, Annibaldi A, Cardozo AK, Peltzer N. RIPK1 is dispensable for cell death regulation in β-cells during hyperglycemia. Mol Metab 2024; 87:101988. [PMID: 39004142 PMCID: PMC11295703 DOI: 10.1016/j.molmet.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVE Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with β-cell loss in diabetes, the mechanism by which TNF induces β-cell demise remains unclear. METHODS Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to β-cell death regulation using mice lacking RIPK1 specifically in β-cells (Ripk1β-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1β-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in β-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in β-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic β-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that β-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.
Collapse
Affiliation(s)
- Önay Veli
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Öykü Kaya
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ana Beatriz Varanda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ximena Hildebrandt
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Peng Xiao
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Yann Estornes
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Matea Poggenberg
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yuan Wang
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Manolis Pasparakis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute for Genetics, University of Cologne, Cologne, Germany
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Alessandro Annibaldi
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Nieves Peltzer
- Department of Translational Genomics, Faculty of Medicine, University of Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
4
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|