1
|
Mitsou E, Klein J. Liposome-Based Interventions in Knee Osteoarthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410060. [PMID: 40143645 PMCID: PMC12036560 DOI: 10.1002/smll.202410060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/21/2025] [Indexed: 03/28/2025]
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joints, causing significant disability and socio-economic burden in the aging population. Simultaneously, however, it is a common occurrence in younger individuals, initiated by joint injuries or obesity alongside other factors. Intravenous and oral pharmaceutical OA management have both been associated with systemic adverse effects, thereby resulting in a growing interest in intra-articular (IA) treatment. IA-administered drugs circumvent the requirement for high dosage, offering immediate access to the site of interest while minimizing any unfavorable effects. Nonetheless, IA-injected drugs, administered in their free form, present low retention time in the knee joint raising the need for multiple injection dosage regimens, while their capability to target the cartilage or specific cell populations is limited. Liposomes, due to their unique characteristics and tunable nature, have proven to be excellent candidates for the management of knee OA. This review explores the last decade's research on the efficacy of various IA liposomal formulations, investigating their multifaceted properties as pharmaceutical carriers, lubricating agents, and a basis for combinatorial approaches paving the way to novel treatment solutions for OA.
Collapse
Affiliation(s)
- Evgenia Mitsou
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
- Present address:
Institute of Chemical BiologyNational Hellenic Research Foundation48, Vassileos Constantinou Ave.Athens11635Greece
| | - Jacob Klein
- Department of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceHertzl Street 234Rehovot7610001Israel
| |
Collapse
|
2
|
Wu S, Zou Y, Tan X, Yang S, Chen T, Zhang J, Xu X, Wang F, Li W. The molecular mechanisms of peptidyl-prolyl cis/trans isomerase Pin1 and its relevance to kidney disease. Front Pharmacol 2024; 15:1373446. [PMID: 38711994 PMCID: PMC11070514 DOI: 10.3389/fphar.2024.1373446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Pin1 is a member of the peptidyl-prolyl cis/trans isomerase subfamily and is widely expressed in various cell types and tissues. Alterations in Pin1 expression levels play pivotal roles in both physiological processes and multiple pathological conditions, especially in the onset and progression of kidney diseases. Herein, we present an overview of the role of Pin1 in the regulation of fibrosis, oxidative stress, and autophagy. It plays a significant role in various kidney diseases including Renal I/R injury, chronic kidney disease with secondary hyperparathyroidism, diabetic nephropathy, renal fibrosis, and renal cell carcinoma. The representative therapeutic agent Juglone has emerged as a potential treatment for inhibiting Pin1 activity and mitigating kidney disease. Understanding the role of Pin1 in kidney diseases is expected to provide new insights into innovative therapeutic interventions and strategies. Consequently, this review delves into the molecular mechanisms of Pin1 and its relevance in kidney disease, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Shukun Wu
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurong Zou
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shuang Yang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Southwest Medical University, Luzhou, China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingli Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Heyliger SO, Soliman KFA, Saulsbury MD, Reams RR. Prognostic Relevance of ZNF844 and Chr 19p13.2 KRAB-Zinc Finger Proteins in Clear Cell Renal Carcinoma. Cancer Genomics Proteomics 2022; 19:305-327. [PMID: 35430565 DOI: 10.21873/cgp.20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Clear-cell renal cell carcinoma (ccRCC) is the most common and aggressive form of all urological cancers, with poor prognosis and high mortality. Despite growing evidence of involvement in carcinogenesis, the role of KRAB-ZFP in ccRCC has not been fully explored. KRAB Zinc finger proteins (KRAB-ZFPs) are the largest family of mammalian transcription regulators. They are differentially expressed in various tissues during cellular development and phenotypic differentiation. MATERIALS AND METHODS In this study, the levels of transcripts of ccRCC from The Cancer Genome Atlas (TCGA) dataset were used to identify prognostic biomarkers in this disease. RESULTS Using bioinformatics techniques, we demonstrate that approximately 60% of KRAB zinc finger proteins located on chromosome 19p13.2 are differentially expressed, with all but two being down-regulated in ccRCC. Moreover, ZNF844, a paralog of ZNF433, was the most down-regulated across all histological grades and pathological stages (p<0.001). In addition, the decrease in ZNF844 expression was associated with poor patient survival (HR=0.41; 95% CI=0.3-0.56; p<0.0001). Gene Set Enrichment Analysis of genes inversely co-expressed with ZNF844 revealed that enriched pathways were consistently related to immune and translation processes (p<0.05, FDR <0.05). Lastly, ZNF844 expression showed moderate, inverse correlation to Helper T-cell (CD4 or Th1) subtype 1 (R=-0.558, p=5.15×10-39) infiltration and with the exhausted T-cell phenotype (R=-0.37; p=4.1×10-21). CONCLUSION Down-regulation of KRAB-ZFPs at 19p13.2 may represent a signature for ccRCC. Moreover, ZNF844 is a prognostic marker for ccRCC and may serve as a putative immune-related tumor suppressor gene.
Collapse
Affiliation(s)
- Simone O Heyliger
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, U.S.A
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Marilyn D Saulsbury
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, U.S.A
| | - R Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
4
|
Chen D, Wang L, Lee TH. Post-translational Modifications of the Peptidyl-Prolyl Isomerase Pin1. Front Cell Dev Biol 2020; 8:129. [PMID: 32195254 PMCID: PMC7064559 DOI: 10.3389/fcell.2020.00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) Pin1 is a unique enzyme that only binds to Ser/Thr-Pro peptide motifs after phosphorylation and regulates the conformational changes of the bond. The Pin1-catalyzed isomerization upon phosphorylation can have profound effects on substrate biological functions, including their activity, stability, assembly, and subcellular localization, affecting its role in intracellular signaling, transcription, and cell cycle progression. The functions of Pin1 are regulated by post-translational modifications (PTMs) in many biological processes, which include phosphorylation, ubiquitination, SUMOylation and oxidation. Phosphorylation of different Pin1 sites regulates Pin1 enzymatic activity, binding ability, localization, and ubiquitination by different kinases under various cellular contexts. Moreover, SUMOylation and oxidation have been shown to downregulate Pin1 activity. Although Pin1 is tightly regulated under physiological conditions, deregulation of Pin1 PTMs contributes to the development of human diseases including cancer and Alzheimer's disease (AD). Therefore, manipulating the PTMs of Pin1 may be a promising therapeutic option for treating various human diseases. In this review, we focus on the molecular mechanisms of Pin1 regulation by PTMs and the major impact of Pin1 PTMs on the progression of cancer and AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Ahmad SS, Waheed T, Rozeen S, Mahmood S, Kamal MA. Therapeutic Study of Phytochemicals Against Cancer and Alzheimer's Disease Management. Curr Drug Metab 2020; 20:1006-1013. [PMID: 31902351 DOI: 10.2174/1389200221666200103092719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Phytochemicals are a significant piece of conventional prescription and have been researched in detail for conceivable consideration in current drug discovery. Medications and plants are firmly identified for traditional prescriptions and ethnomedicines that are basically arranged from plants. Recognizing the medical advantages of phytochemicals is of fundamental advancement in medication and useful sustenance improvement. Secondary metabolites of different plants have been customarily used for the improvement of human wellbeing. The phytochemicals are diets rich, which can upgrade neuroplasticity and protection from neurodegeneration. RESULTS Phytochemicals keep on entering clinical preliminaries or provide leads for the synthesis of medicinal agents. Phytochemicals are a great extent cancer prevention agents in nature at lower concentrations and under favorable cell conditions that adequately avoid the oxidation of different molecules that have an ability to produce free radicals and thus protect the body. CONCLUSION The purpose of this review is to describe the use of phytochemicals against cancer and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Tayyaba Waheed
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sayed Rozeen
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Sufia Mahmood
- Department of Bioscience, Faculty of Sciences, Integral University, Lucknow, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
6
|
Dynamic regulation of Pin1 expression and function during zebrafish development. PLoS One 2017; 12:e0175939. [PMID: 28426725 PMCID: PMC5398671 DOI: 10.1371/journal.pone.0175939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
The prolyl isomerase Pin1 plays a key role in the modulation of proline-directed phosphorylation signaling by inducing local conformational changes in phosphorylated protein substrates. Extensive studies showed different roles for Pin1 in physiological processes and pathological conditions such as cancer and neurodegenerative diseases. However, there are still several unanswered questions regarding its biological role. Notably, despite evidences from cultured cells showing that Pin1 expression and activity may be regulated by different mechanisms, little is known on their relevance in vivo. Using Danio rerio (zebrafish) as a vertebrate model organism we showed that pin1 expression is regulated during embryogenesis to achieve specific mRNA and protein distribution patterns. Moreover, we found different subcellular distribution in particular stages and cell types and we extended the study of Pin1 expression to the adult zebrafish brain. The analysis of Pin1 overexpression showed alterations on zebrafish development and the presence of p53-dependent apoptosis. Collectively, our results suggest that specific mechanisms are operated in different cell types to regulate Pin1 function.
Collapse
|
7
|
Bae JS, Noh SJ, Kim KM, Jang KY, Park HS, Chung MJ, Park BH, Moon WS. PIN1 in hepatocellular carcinoma is associated with TP53 gene status. Oncol Rep 2016; 36:2405-11. [PMID: 27499097 DOI: 10.3892/or.2016.5001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/22/2016] [Indexed: 11/05/2022] Open
Abstract
Phosphorylation of proteins on serine/threonine residues that precede proline (pSer/Thr-Pro) is specifically catalyzed by the peptidyl-prolyl cis-trans isomerase PIN1. PIN1-mediated prolyl-isomerization induces cell cycle arrest and growth inhibition through the regulation of target proteins, including TP53. We examined whether PIN1 acts in a different manner according to TP53 gene status in hepatocellular carcinoma (HCC). We investigated the expression of PIN1 and TP53 proteins in 119 HCC tissue samples. We also analyzed PIN1 expression in combination with TP53 gene mutation and its correlation with the clinical outcome. In addition, we used synthetic small interfering RNA to silence PIN1 gene expression in TP53 wild-type and TP53 mutant HCC cell lines, and then evaluated cell proliferation, migration and invasion. Expression of PIN1 was strongly associated with expression of TP53 protein or TP53 mutation of HCC samples. PIN1 and TP53 expression in TP53 mutant HCC cell lines was higher than that in TP53 wild-type HCC cell lines. Silencing of PIN1 in HLE cells containing mutant TP53 significantly decreased cell proliferation, migration and invasion. In contrast to PIN1 silencing in HLE cells, PIN1 silencing in HepG2 cells containing functional wild-type TP53 resulted in enhanced tumor cell proliferation. HCC patients bearing PIN1 expression with wild-type TP53 were predicted to demonstrate favorable relapse-free survival. Our results suggest that PIN1 plays a role in cancer cell proliferation, migration and invasion in a different manner according to the TP53 gene mutation status in HCC. In particular, interaction of PIN1 with mutant TP53 can act as a tumor promoter and increase its oncogenic activities in HCC.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Sang Jae Noh
- Department of Forensic Medicine, Chonbuk National University Medical School, Jeonju 561‑756, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| |
Collapse
|
8
|
Abstract
Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance.
Collapse
Affiliation(s)
- Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Targeting Peptidyl-Prolyl Isomerase Pin1 to Inhibit Tumor Cell Aggressiveness. TUMORI JOURNAL 2016; 102:144-9. [DOI: 10.5301/tj.5000471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/20/2022]
Abstract
Purpose Because the peptidyl-prolyl isomerase PIN1 interacts with multiple protein kinases and phosphoproteins into a network orchestrating the cellular response to various stimuli, there is an increasing interest in exploiting its potential as therapeutic target. In the present study, the effect of targeting PIN1 was investigated in 2 human cancer cell lines characterized by increased aggressive potential, high expression of erbB receptor family members, and defective p53. Methods PIN1 silencing was carried out in skin squamous cell carcinoma A431 cells displaying elevated EGFR/HER1 levels and in ovarian adenocarcinoma SKOV-3 cells displaying high levels of erbB2 (HER2). Nonoverlapping siRNA duplexes targeting different regions of PIN1 mRNA were transfected in tumor cells, which were analyzed using Western blotting for the expression of selected proteins. In vivo tumorigenicity studies were carried out in athymic nude mice. Results A431 and SKOV-3 cell systems were found to be a source of cells with increased aggressive potential, i.e., cancer stem cell-like cells, as defined by the capability to grow as spheres. A marked decrease of PIN1 levels and of sphere-forming capability was observed in PIN1-silenced cells. The expression of phospho-p38 decreased following PIN1 silencing in A431 and SKOV-3 cells, as well as phospho-EGFR levels in A431 - silenced cells. PIN1 inhibition prolonged latency and reduced tumor take and growth of SKOV-3 cells in nude mice. Conclusions Our results support that PIN1 may be a valuable target to hit in cancer cells characterized by increased aggressive potential, overexpression of erbB receptor family members, and defective p53.
Collapse
|
10
|
Lin CH, Li HY, Lee YC, Calkins MJ, Lee KH, Yang CN, Lu PJ. Landscape of Pin1 in the cell cycle. Exp Biol Med (Maywood) 2015; 240:403-408. [PMID: 25662955 PMCID: PMC4935233 DOI: 10.1177/1535370215570829] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pin1 is a peptidyl-prolyl isomerase which plays a critical role in many diseases including cancer and Alzheimer's disease. The essential role of Pin1 is to affect stability, localization or function of phosphoproteins by catalyzing structural changes. Among the collection of Pin1 substrates, many have been shown to be involved in regulating cell cycle progression. The cell cycle disorder caused by dysregulation of these substrates is believed to be a common phenomenon in cancer. A number of recent studies have revealed possible functions of several important Pin1-binding cell cycle regulators. Investigating the involvement of Pin1 in the cell cycle may assist in the development of future cancer therapeutics. In this review, we summarize current knowledge regarding the network of Pin1 substrates and Pin1 regulators in cell cycle progression. In G1/S progression, cyclin D1, RB, p53, p27, and cyclin E are all well-known cell cycle regulators that are modulated by Pin1. During G2/M transition, our lab has shown that Aurora A suppresses Pin1 activity through phosphorylation at Ser16 and cooperates with hBora to modulate G2/M transition. We conclude that Pin1 may be thought of as a molecular timer which modulates cell cycle progression networks.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Hao-Yi Li
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Cheng Lee
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan
| | - Chia-Ning Yang
- Institute of Biotechnology, National University of Kaohsiung, 811, Kaohsiung, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
11
|
Driver JA, Zhou XZ, Lu KP. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2015; 1850:2069-76. [PMID: 25583562 DOI: 10.1016/j.bbagen.2014.12.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pin1 is an intracellular signaling molecule which plays a critical but opposite role in the pathogenesis of Alzheimer's disease (AD) and many human cancers. SCOPE OF REVIEW We review the structure and function of the Pin1 enzyme, the diverse roles it plays in cycling cells and neurons, the epidemiologic evidence for the inverse association between cancer and AD, and the potential therapeutic implications of Pin1-based therapies. MAJOR CONCLUSIONS Pin1 is a unique enzyme that has effects on the function of target proteins by "twisting" them into different shapes. Cycling cells use Pin1 to help coordinate cell division. It is over-expressed and/or activated by multiple mechanisms in many common human cancers, and acts on multiple signal pathways to promote tumorigenesis. Inhibition of Pin1 in animal models has profound anti-tumor effects. In contrast, Pin1 is down-regulated or inactivated by multiple mechanisms in AD brains. The absence of Pin1 impairs tau function and amyloid precursor protein processing, leading to tangle- and amyloid-related pathologies and neurodegeneration in an age-dependent manner, resembling human AD. We have developed cis and trans conformation-specific antibodies to provide the first direct evidence that tau exists in distinct cis and trans conformations and that Pin1 accelerates its cis to trans conversion, thereby protecting against tangle formation in AD. GENERAL SIGNIFICANCE Available studies on Pin1 suggest that cancer and AD may share biological pathways that are deregulated in different directions. Pin1 biology opens exciting preventive and therapeutic horizons for both cancer and neurodegeneration. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Jane A Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiao Zhen Zhou
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Kun Ping Lu
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Ao R, Zhang DR, Du YQ, Wang Y. Expression and significance of Pin1, β-catenin and cyclin D1 in hepatocellular carcinoma. Mol Med Rep 2014; 10:1893-8. [PMID: 25109821 DOI: 10.3892/mmr.2014.2456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to examine the expression and significance of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), β‑catenin and cyclin D1 in hepatocellular carcinoma (HCC). A total of 24 samples of HCC and adjacent normal tissues were analyzed. The expression of Pin1, β‑catenin and cyclin D1 in HCC were detected using immunohistochemistry, western blot analysis, polymerase chain reaction and immunofluorescence. The expression of Pin1, β‑catenin and cyclin D1 in HCC tissues were significantly higher than that in adjacent tissues. Pin1 was not markedly expressed in the adjacent normal tissues, while expression in the cytoplasm and nucleus of HCC cells was high. However, β‑catenin and cyclin D1 only revealed a weak expression in the cytoplasm and nucleus of HCC cells. Immunoprecipitation analyses demonstrated two clear bands at 19 and 34 kDa, and a brown band at 55 kDa as expected. Immunofluorescence analysis of HCC cells indicated that Pin1 was present in the cytoplasm and nucleus, and β‑catenin and cyclin D1 were present in the nucleus. In conclusion, the present study indicated that Pin1, β‑catenin and cyclin D1 were highly expressed in HCC. Therefore, detection of the expression of Pin1, β‑catenin and cyclin D1 may be useful for the development of novel diagnostic and treatment strategies for HCC.
Collapse
Affiliation(s)
- Ran Ao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dao-Rong Zhang
- Department of Pathophysiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ya-Qi Du
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Li C, Chang DL, Yang Z, Qi J, Liu R, He H, Li D, Xiao ZX. Pin1 modulates p63α protein stability in regulation of cell survival, proliferation and tumor formation. Cell Death Dis 2013; 4:e943. [PMID: 24309930 PMCID: PMC3877541 DOI: 10.1038/cddis.2013.468] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/19/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022]
Abstract
The homolog of p53 gene, p63, encodes multiple p63 protein isoforms. TAp63 proteins contain an N-terminal transactivation domain similar to that of p53 and function as tumor suppressors; whereas ΔNp63 isoforms, which lack the intact N-terminal transactivation domain, are associated with human tumorigenesis. Accumulating evidence demonstrating the important roles of p63 in development and cancer development, the regulation of p63 proteins, however, is not fully understood. In this study, we show that peptidyl-prolyl isomerase Pin1 directly binds to and stabilizes TAp63α and ΔNp63α via inhibiting the proteasomal degradation mediated by E3 ligase WWP1. We further show that Pin1 specifically interacts with T538P which is adjacent to the P550PxY543 motif, and disrupts p63α–WWP1 interaction. In addition, while Pin1 enhances TAp63α-mediated apoptosis, it promotes ΔNp63α-induced cell proliferation. Furthermore, knockdown of Pin1 in FaDu cells inhibits tumor formation in nude mice, which is rescued by simultaneous knockdown of WWP1 or ectopic expression of ΔNp63α. Moreover, overexpression of Pin1 correlates with increased expression of ΔNp63α in human oral squamous cell carcinoma samples. Together, these results suggest that Pin1-mediated modulation of ΔNp63α may have a causative role in tumorigenesis.
Collapse
Affiliation(s)
- C Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jamiyandorj U, Bae JS, Noh SJ, Jachin S, Choi JE, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression of peptidyl-prolyl isomerase PIN1 and its role in the pathogenesis of extrahepatic cholangiocarcinoma. Oncol Lett 2013; 6:1421-1426. [PMID: 24179535 PMCID: PMC3813802 DOI: 10.3892/ol.2013.1525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/07/2013] [Indexed: 01/11/2023] Open
Abstract
The phosphorylation of proteins on serine/threonine residues that immediately precede proline (pSer/Thr-Pro) is a key signaling mechanism by which cell cycle regulation and cell differentiation and proliferation occur. The peptidyl-prolyl isomerase PIN1-catalyzed conformational changes of the pSer/Thr-Pro motifs may have profound effects on the function of numerous oncogenic and cell signaling pathways. To date, no studies have examined the expression of PIN1 and its potential role in the pathogenesis of extrahepatic cholangiocarcinoma (ECC). Therefore, the present study performed an immunohistochemistry analysis of the expression of PIN1 in 67 cases of ECC and evaluated its association with clinicopathological factors. In addition, the role of PIN1 was examined using synthetic small interfering RNA (siRNA) to silence PIN1 gene expression in human CC RBE cells. Positive PIN1 expression was observed in 35 of the 67 (52.2%) ECC cases and was predominantly localized to the nucleus of the tumor cells. The immunoreactive score for PIN1 was significantly higher in the tumor cells (4.07±0.4) compared with the adjacent benign bile duct cells (1.19±0.4) (P<0.001). PIN1 expression was significantly correlated with tumor cell proliferation (Ki-67 labeling index; P=0.024). Silencing PIN1 expression using siRNA significantly decreased the proliferation, migration and invasion of the tumor cells. In conclusion, the results indicated that the expression of PIN1 may play a key role in the development and progression of ECC.
Collapse
Affiliation(s)
- Urangoo Jamiyandorj
- Department of Pathology, Chonbuk National University, Medical School, Research Institute of Clinical Medicine and Research Institute for Endocrine Sciences, Jeonju, Chonbuk 561-756, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu F, Wang YQ, Meng L, Gu M, Tan RY. FK506-binding protein 12 ligands: a patent review. Expert Opin Ther Pat 2013; 23:1435-49. [DOI: 10.1517/13543776.2013.828695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Rasmussen NR, Wright TM, Brooks SA, Hacker KE, Debebe Z, Sendor AB, Walker MP, Major MB, Green J, Wahl GM, Rathmell WK. Receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression creates a poised state of Wnt signaling in renal cancer. J Biol Chem 2013; 288:26301-26310. [PMID: 23893409 DOI: 10.1074/jbc.m113.466086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC.
Collapse
Affiliation(s)
- Neal R Rasmussen
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | - Tricia M Wright
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | - Samira A Brooks
- Lineberger Comprehensive Cancer Center,; Curriculum in Toxicology
| | - Kathryn E Hacker
- From the Curriculum in Genetics and Molecular Biology,; Lineberger Comprehensive Cancer Center
| | | | | | | | - Michael Ben Major
- Lineberger Comprehensive Cancer Center,; Department of Cell Biology and Physiology, and
| | - Jennifer Green
- the Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Geoffrey M Wahl
- the Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center,; Departments of Medicine and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and.
| |
Collapse
|
17
|
Teng BL, Hacker KE, Chen S, Means AR, Rathmell WK. Tumor suppressive activity of prolyl isomerase Pin1 in renal cell carcinoma. Mol Oncol 2011; 5:465-74. [PMID: 21764651 PMCID: PMC3194764 DOI: 10.1016/j.molonc.2011.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 12/27/2022] Open
Abstract
Pin1 specifically recognizes and catalyzes the cis-trans isomerization of phosphorylated-Ser/Thr-Pro bonds, which modulate the stability, localization, and function of numerous Pin1 targets involved in tumor progression. However, the role of Pin1 in cancer remains enigmatic as the gene is located on chromosome 19p13.2, which is a region subject to loss of heterozygosity in several tumors. Since Pin1 protein is frequently under-expressed in kidney cancer, we have explored its role in human clear cell renal cell carcinoma (ccRCC). Here we show evidence for PIN1 gene deletion and mRNA under-expression as a mechanism of Pin1 reduction in ccRCC tumors. We demonstrate that restoration of Pin1 in cell lines found to be deficient in Pin1 protein expression can attenuate the growth of ccRCC cells in soft agar and a xenograft tumor model. Moreover, this ability of Pin1 to negatively influence tumor growth in ccRCC cells may be dependent on the presence of functional p53, which is infrequently mutated in ccRCC. These observations suggest Pin1 may have a mild tumor suppressive role in ccRCC.
Collapse
Affiliation(s)
- Brian L. Teng
- Department of Pharmacology and Cancer Biology, Duke University, 308 Research Drive, Durham, NC 27710, USA
| | - Kathryn E. Hacker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive CB 7295, Chapel Hill, NC 27599-7295, USA
| | - Shufen Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive CB 7295, Chapel Hill, NC 27599-7295, USA
| | - Anthony R. Means
- Department of Pharmacology and Cancer Biology, Duke University, 308 Research Drive, Durham, NC 27710, USA
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive CB 7295, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|