1
|
Wang J, Chen L, Zheng Q, Chen S, Hou Z, Liu P. Indirubin induces apoptosis in ovarian cancer cells via the mitochondrial pathway. Am J Transl Res 2024; 16:6119-6129. [PMID: 39544767 PMCID: PMC11558396 DOI: 10.62347/iofy5604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To investigate the pro-apoptotic effects of Indirubin, a traditional Chinese medicine, on ovarian cancer SKOV3 cell line and to explore its underlying mechanisms. METHODS Ovarian cancer SKOV3 cells were divided into a control group (cells cultured normally) and an experimental group (cells cultured in medium containing Indirubin). SKOV3 cells at the logarithmic phase were treated with Indirubin at various concentrations. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, while apoptosis was detected by flow cytometry, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunofluorescence. Transcriptome sequencing was conducted to screen for apoptosis-related factors. qPCR and western blot were used to detect the mRNA and protein expression on added of molecules related to mitochondrial permeability transition pores. RESULTS MTT assay showed that Indirubin inhibited the growth of SKOV3 cells in both plate and sphere cultures, with IC50 values of 3.003 μM (plate culture) and 4.253 μM (sphere culture), respectively. Indirubin showed a lower inhibitory concentration than cisplatin (IC50 3.687 μM in plate culture and 7.023 μM in sphere culture), and its effect was comparable to adriamycin. Flow cytometry revealed an increase in apoptosis rates in SKOV3 cells treated with Indirubin. Transcriptome sequencing indicated significant changes in the transcription of various apoptosis-related genes, particularly those involved in the mitochondrial apoptosis pathway, such as Bcl-2-associated X protein (Bax) and Bcl2 associated agonist of cell death (Bad). After Indirubin treatment, the mRNA and protein expression levels of mitochondrial channel-related genes Cyclophilin D (CyPD), adenine nucleotide translocator 1 (ANT1), and voltage-dependent anion channel (VADC) were significantly elevated (all P < 0.05). By regulating the mitochondrial membrane permeability through the Bcl-2 family members, Indirubin promoted apoptosis in SKOV3 cells. CONCLUSION Indirubin inhibits the proliferation and promotes the apoptosis of ovarian cancer cells, exerting an anti-tumor effect. Its pro-apoptotic action is closely related to the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Qiaomei Zheng
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Shaozhan Chen
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Zhidan Hou
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong UniversityJinan 250012, Shandong, China
| |
Collapse
|
2
|
Tran HL, Lai KH, Chang HS, Chen YS, Wang HC, Yang SS, Chang HW, Hsu CM, Yen CH, Hsiao HH. Indigofera suffruticosa aerial parts extract induce G2/M arrest and ATR/CHK1 pathway in Jurkat cells. BMC Complement Med Ther 2024; 24:28. [PMID: 38195460 PMCID: PMC10775588 DOI: 10.1186/s12906-023-04325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Indigofera suffruticosa Mill. is used as a folk medicine for treating patients with leukemia, however very little is known regarding the molecular mechanism of its anti-leukemic activity and the chemical profile of the active extract. The present study aimed to reveal the molecular effect of I. suffruticosa aerial parts extract (ISAE) on leukemia cells and its chemical constituents. METHODS Cytotoxicity of ISAE were determined by resazurin viability assay, multitox - Glo multiplex cytotoxicity assay, and Annexin V staining assay. Cell cycle profiles were revealed by propidium iodide staining assay. The effects of ISAE on G2/M arrest signaling and DNA damage were evaluated by Western blot assay and phospho-H2A.X staining assay. The chemical profile of ISAE were determined by tandem mass spectroscopy and molecular networking approach. RESULTS We showed that the acute lymphoblastic leukemia cell line Jurkat cell was more responsive to ISAE treatment than other leukemia cell lines. In contrast, ISAE did not induce cytotoxic effects in normal fibroblast cells. Cell cycle analysis revealed that ISAE triggered G2/M arrest in Jurkat cells in dose- and time-dependent manners. Elevation of annexin V-stained cells and caspase 3/7 activity suggested ISAE-induced apoptosis. Furthermore, ISAE alone could increase the phosphorylation of CDK1 at Y15 and activate the ATR/CHK1/Wee1/CDC25C signaling pathway. However, the addition of caffeine, a widely used ATR inhibitor to ISAE, reduced the phosphorylation of ATR, CHK1, and CDK1, as well as G2/M arrest in Jurkat cells. Moreover, increased phospho-H2A.X stained cells indicated the involvement of DNA damage in the anti-leukemic effect of ISAE. Finally, qualitative analysis using UPLC-tandem mass spectroscopy and molecular networking revealed that tryptanthrin was the most abundant organoheterocyclic metabolite in ISAE. At equivalent concentrations to ISAE, tryptanthrin induced G2/M arrest of Jurkat cells, which can be prevented by caffeine. CONCLUSIONS ISAE causes G2/M arrest via activating ATR/CHK1/CDK1 pathway and tryptanthrin is one of the active components of ISAE. Our findings provide subtle support to the traditional use of I. suffruitcosa in leukemia management in folk medicine.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, 80708, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shuen-Shin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chin-Mu Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Hui-Hua Hsiao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Yang FF, Shuai MS, Guan X, Zhang M, Zhang QQ, Fu XZ, Li ZQ, Wang DP, Zhou M, Yang YY, Liu T, He B, Zhao YL. Synthesis and antibacterial activity studies in vitro of indirubin-3'-monoximes. RSC Adv 2022; 12:25068-25080. [PMID: 36199871 PMCID: PMC9438470 DOI: 10.1039/d2ra01035f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug-resistant microbial pathogens are a serious global health problem. New compounds with antibacterial activity serve as good candidates for developing novel antibacterial drugs which is very urgent and important. In this work, based on the unique scaffold of indirubin, an active ingredient of traditional Chinese medicine formulation Danggui Luhui Wan, we synthesized 29 indirubin-3'-monoximes and preliminarily evaluated their antibacterial activities. The antibacterial activity results demonstrated that the synthesized indirubin-3'-monoximes 5a-5z and 5aa-5ad displayed good potency against S. aureus ATCC25923 (MIC = 0.4-25.6 μg mL-1). Among them, we found that the 5-F, 5-Cl and 7-CF3 substituted indirubin-3'-monoximes 5r, 5s and 5aa also showed better antibacterial efficiency for S. aureus (MICs up to 0.4 μg mL-1) than the prototype natural product indirubin (MIC = 32 μg mL-1). More importantly, indirubin-3'-monoxime 5aa has certain synergistic effect with levofloxacin against clinic multidrug-resistant S. aureus (fractional inhibitory concentration index: 0.375). In addition, relevant experiments including electron microscopy observations, PI staining and the leakage of extracellular potassium ions and nucleic acid (260 nm) have been performed after treating S. aureus with indirubin-3'-monoxime 5aa, and the results revealed that indirubin-3'-monoximes could increase the cell membrane permeability of S. aureus. Although indirubin-3'-monoxime 5aa showed some cytotoxicity toward SH-SY5Y cells relative to compounds 5r and 5s, the skin irritation test of male mice after shaving showed that compound 5aa at a concentration of 12.8 μg mL-1 had no toxicity to mouse skin, and it could be used as a leading compound for skin antibacterial drugs.
Collapse
Affiliation(s)
- Fen-Fen Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ming-Shan Shuai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Mao Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Qing-Qing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiao-Zhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Zong-Qin Li
- Department of Neurology Sichuan Mianyang 404 Hospital Mianyang 621000 People's Republic of China
| | - Da-Peng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University Guiyang 550025 People's Republic of China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yuan-Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| |
Collapse
|
5
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
6
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
7
|
Yao CL, Zhang JQ, Li JY, Wei WL, Wu SF, Guo DA. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep 2021; 38:1618-1633. [PMID: 33511969 DOI: 10.1039/d0np00057d] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: up to July 2020Drugs derived from traditional Chinese medicine (TCM) include both single chemical entities and multi-component preparations. Drugs of both types play a significant role in the healthcare system in China, but are not well-known outside China. The research and development process, the molecular mechanisms of action, and the clinical evaluation associated with some exemplificative anticancer drugs based on TCM are discussed, along with their potential of integration in western medicine.
Collapse
Affiliation(s)
- Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Shi-Fei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
8
|
Maranto C, Udhane V, Jia J, Verma R, Müller-Newen G, LaViolette PS, Pereckas M, Sabharwal L, Terhune S, Pattabiraman N, Njar VC, Imig JD, Wang L, Nevalainen MT. Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:E3412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jing Jia
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.J.); (L.W.)
| | - Ranjit Verma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Aachen University, 52066 Aachen, Germany;
| | - Peter S. LaViolette
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Radiology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | | | - Vincent C.O. Njar
- Department of Pharmacology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.J.); (L.W.)
| | - Marja T. Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Li Z, Wang H, Wei J, Han L, Guo Z. Indirubin exerts anticancer effects on human glioma cells by inducing apoptosis and autophagy. AMB Express 2020; 10:171. [PMID: 32975633 PMCID: PMC7519025 DOI: 10.1186/s13568-020-01107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/09/2020] [Indexed: 01/14/2023] Open
Abstract
Glioma causes significant mortality across the world and the most aggressive type of brain cancer. The incidence of glioma is believed to increase in the next few decades and hence more efficient treatment strategies need to be developed for management of glioma. Herein, we examined the anticancer effects of Indirubin against a panel of human glioma cells and attempted to explore the underlying mechanisms. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay showed that Indirubin could inhibit the growth of all the glioma cells but the lowest IC50 of 12.5 µM was observed against the U87 and U118 glioma cells. Additionally, the cytotoxic effects of Indirubin were comparatively negligible against the normal astrocytes with an IC50 of > 100 µM. Investigation of mechanism of action, revealed that Indirubin exerts growth inhibitory effects on the U87 and U118 glioma cells by autophagic and apoptotic cell death. Annexin V/PI staining assay showed that apoptotic cell percentage increased dose dependently. Apoptosis was associated with increase in Bax decrease in Bcl-2 expressions. Additionally, the expression of autophagic proteins such as LC3II, ATG12, ATG15 and Beclin 1 was also increased. Wound heal assay showed that Indirubin caused remarkable decrease in the migration of the U87 and U118 cells indicative of anti-metastatic potential of Indirubin. Taken together, these results suggest that Indirubin exerts potent anticancer effects on glioma cells and may prove essential in the management of glioma.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Han Wang
- Clinical Laboratory, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, China
| | - Jun Wei
- Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Liang Han
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
10
|
Wang Q, Yu J, Hu Y, Chen X, Zhang L, Pan T, Miao K, Mou Y, Xu Y, Xiong W, Wang Y. Indirubin alleviates bleomycin-induced pulmonary fibrosis in mice by suppressing fibroblast to myofibroblast differentiation. Biomed Pharmacother 2020; 131:110715. [PMID: 32927253 DOI: 10.1016/j.biopha.2020.110715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial lung disease with a poor prognosis. Indirubin, a compound obtained from indigo-bearing plants or mollusks of the family Muricidae, has various bioactivities, including anti-tumor activity and anti-inflammation effect. However, whether indirubin could mediate its therapeutic effects on bleomycin (BLM)-induced pulmonary fibrosis has not been addressed. METHODS The impacts of indirubin on bleomycin (BLM)-induced pulmonary fibrosis were evaluated by pathological staining, western blot, RT-PCR and immunofluorescent staining. The effects of indirubin on fibroblast differentiation and related signaling were next investigated to demonstrate the underlying mechanisms. RESULTS The results indicated that indirubin-treated mice exhibited a definitively improved survival rate than that of the BLM-induced mice in a dose-depend manner. Additionally, administration of indirubin significantly alleviated inflammatory cells infiltration in BLM mice. Importantly, indirubin provided protection for mice against BLM-induced pulmonary fibrosis as manifested by the attenuating expression of fibrotic hallmarks, including fibronectin, collagen I and α-smooth muscle actin (α-SMA). Subsequently, we providedin vitro evidence revealing that indirubin suppressed fibroblast to myofibroblast differentiation by repressed TGF-β/Smad signaling in a dose-dependent manner. Notably, our data showed that indirubin seemed to be safe in mice and fibroblasts. CONCLUSION Overall, indirubin could protect the mice against BLM-induced pulmonary fibrosis by alleviated fibroblast differentiation and may be therapeutically beneficial for IPF patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Yinan Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Xueying Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Lei Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Ting Pan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Kang Miao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Yong Mou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China
| | - Weining Xiong
- Department of Respiratory Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, 1095 Jiefang Ave, Wuhan 430030, China.
| |
Collapse
|
11
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
12
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
13
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
14
|
Brachet-Botineau M, Deynoux M, Vallet N, Polomski M, Juen L, Hérault O, Mazurier F, Viaud-Massuard MC, Prié G, Gouilleux F. A Novel Inhibitor of STAT5 Signaling Overcomes Chemotherapy Resistance in Myeloid Leukemia Cells. Cancers (Basel) 2019; 11:cancers11122043. [PMID: 31861239 PMCID: PMC6966442 DOI: 10.3390/cancers11122043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are crucial downstream effectors of tyrosine kinase oncogenes (TKO) such as BCR-ABL in chronic myeloid leukemia (CML) and FLT3-ITD in acute myeloid leukemia (AML). Both proteins have been shown to promote the resistance of CML cells to tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM). We recently synthesized and discovered a new inhibitor (17f) with promising antileukemic activity. 17f selectively inhibits STAT5 signaling in CML and AML cells by interfering with the phosphorylation and transcriptional activity of these proteins. In this study, the effects of 17f were evaluated on CML and AML cell lines that respectively acquired resistance to IM and cytarabine (Ara-C), a conventional therapeutic agent used in AML treatment. We showed that 17f strongly inhibits the growth and survival of resistant CML and AML cells when associated with IM or Ara-C. We also obtained evidence that 17f inhibits STAT5B but not STAT5A protein expression in resistant CML and AML cells. Furthermore, we demonstrated that 17f also targets oncogenic STAT5B N642H mutant in transformed hematopoietic cells.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | - Margaux Deynoux
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | - Nicolas Vallet
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Service d’Hématologie et Thérapie Cellulaire, CHRU de Tours, 37000 Tours, France
| | - Marion Polomski
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Ludovic Juen
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Olivier Hérault
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Service d’Hematologie Biologique, CHRU de Tours, 37000 Tours, France
| | - Frédéric Mazurier
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | | | - Gildas Prié
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Correspondence: ; Tel.: +33-(2)-47-36-62-91
| |
Collapse
|
15
|
Karakaş Ö. Effects of Methyl Jasmonate and Putrescine on Tryptanthrin and Indirubin Production in in vitro Cultures of Isatis demiriziana Mısırdalı. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.521498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Shao K, Wang T, Li T, Zhang A, Cai M, Zhao G, Fu Q, Wang Q, Liu X, Hou M. Indirubin regulates MPL and TNF expression in peripheral blood mononuclear cells from patients with primary immune thrombocytopenia. Exp Hematol 2019; 73:18-24. [PMID: 31014934 DOI: 10.1016/j.exphem.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Indirubin, a traditional Chinese medicine, is currently used to treat certain autoimmune diseases such as primary immune thrombocytopenia (ITP) in clinics. However, the effects of indirubin on expression of related genes in peripheral blood mononuclear cells (PBMCs) from ITP patients have not been investigated. In the present study, PBMCs were isolated from 19 adult patients with well-characterized active ITP and 20 healthy controls (HCs) and then treated with increasing concentrations of indirubin. The mRNA expression levels of thrombopoietin receptor (MPL), GATA binding protein 3 (GATA3), DNA methyltransferase 3B (DNMT3B), interleukin-6 (IL6), tumor necrosis factor (TNF), and interferon gamma (IFN-γ) were determined by quantitative real-time polymerase chain reaction (PCR). We found that indirubin had no cytotoxic effect on PBMC viability. Significantly lower MPL (p < 0.05) and GATA3 (p < 0.05) expression together with markedly higher IL6 (p < 0.05), TNF (p < 0.0001), and IFN-γ (p < 0.001) mRNA levels were observed in ITP patients compared with HCs. Notably, indirubin significantly enhanced MPL expression and inhibited TNF expression in PBMCs from ITP patients (p < 0.05). In summary, indirubin may play a direct role in thrombopoiesis by activating cellular MPL and normalizing TNF expression to suppress inflammation in ITP. This study may thus improve our understanding of indirubin and provide important information for optimizing therapeutic strategies for ITP patients.
Collapse
Affiliation(s)
- Kai Shao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, China; Qingdao Key Lab of Mitochondrial Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Tengkai Wang
- Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tiantian Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Meijuan Cai
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Guanghui Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Qingsong Fu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.
| | - Xinguang Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Li H, Liu L, Zhuang J, Liu C, Zhou C, Yang J, Gao C, Liu G, Sun C. Deciphering the mechanism of Indirubin and its derivatives in the inhibition of Imatinib resistance using a "drug target prediction-gene microarray analysis-protein network construction" strategy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:75. [PMID: 30909944 PMCID: PMC6434895 DOI: 10.1186/s12906-019-2471-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022]
Abstract
Background The introduction of imatinib revolutionized the treatment of chronic myeloid leukaemia (CML), substantially extending patient survival. However, imatinib resistance is currently a clinical problem for CML. It is very importantto find a strategy to inhibit imatinib resistance. Methods (1) We Identified indirubin and its derivatives and predicted its putative targets; (2) We downloaded data of the gene chip GSE2810 from the Gene Expression Omnibus (GEO) database and performed GEO2R analysis to obtain differentially expressed genes (DEGs); and (3) we constructed a P-P network of putative targets and DEGs to explore the mechanisms of action and to verify the results of molecular docking. Result We Identified a total of 42 small-molecule compounds, of which 15 affected 11 putative targets, indicating the potential to inhibit imatinib resistance; the results of molecular docking verified these results. Six biomarkers of imatinib resistance were characterised by analysing DEGs. Conclusion The 15 small molecule compounds inhibited imatinib resistance through the cytokine-cytokine receptor signalling pathway, the JAK-stat pathway, and the NF-KB signalling pathway. Indirubin and its derivatives may be new drugsthat can combat imatinib resistance. Electronic supplementary material The online version of this article (10.1186/s12906-019-2471-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Ndolo KM, An SJ, Park KR, Lee HJ, Yoon KB, Kim YC, Han SY. Discovery of an Indirubin Derivative as a Novel c-Met Kinase Inhibitor with In Vitro Anti-Tumor Effects. Biomol Ther (Seoul) 2019; 27:216-221. [PMID: 30060294 PMCID: PMC6430219 DOI: 10.4062/biomolther.2018.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023] Open
Abstract
The c-Met protein is a receptor tyrosine kinase involved in cell growth, proliferation, survival, and angiogenesis of several human tumors. Overexpression of c-Met has been found in gastric cancers and correlated with a poor prognosis. Indirubin is the active component of Danggui Longhui Wan, which is a traditional Chinese antileukemic recipe. In the present study, we tested the anti-cancer effects of an indirubin derivative, LDD-1937, on human gastric cancer cells SNU-638. When we performed the in vitro kinase assay against the c-Met activity, LDD-1937 inhibited the activity of c-Met. This result was confirmed by immunoblot and immunofluorescence of phosphorylated c-Met. Immunoblot analysis showed that LDD-1937 decreased the expression of the Erk1/2, STAT3, STAT5, and Akt, downstream proteins of c-Met. In addition, LDD-1937 reduced the cell viability and suppressed colony formation and migration of SNU-638 cells. Furthermore, LDD-1937 induced G2/M phase arrest in the SNU-638 cells by decreasing the expression levels of cyclin B1 and CDC2. Cleaved-PARP, an apoptosis-related protein, was up-regulated in cells treated with LDD-1937. Overall, this study suggests that LDD-1937 may be a novel small-molecule with therapeutic potential for selectively inhibiting c-Met and c-Met downstream pathways in human gastric cancers overexpressing c-Met.
Collapse
Affiliation(s)
- Karyn Muzinga Ndolo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Su Jin An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeong Ryang Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61186, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
19
|
Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Med Sci Monit 2018; 24:5668-5688. [PMID: 30108199 PMCID: PMC6106618 DOI: 10.12659/msm.908756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Qingdai, a traditional Chinese medicine (TCM) used for the treatment of chronic myeloid leukemia (CML) with good efficacy, has been used in China for decades. However, due to the complexity of traditional Chinese medicinal compounds, the pharmacological mechanism of Qingdai needs further research. In this study, we investigated the pharmacological mechanisms of Qingdai in the treatment of CML using network pharmacology approaches. First, components in Qingdai that were selected by pharmacokinetic profiles and biological activity predicted putative targets based on a combination of 2D and 3D similarity measures with known ligands. Then, an interaction network of Qingdai putative targets and known therapeutic targets for the treatment of chronic myeloid leukemia was constructed. By calculating the 4 topological features (degree, betweenness, closeness, and coreness) of each node in the network, we identified the candidate Qingdai targets according to their network topological importance. The composite compounds of Qingdai and the corresponding candidate major targets were further validated by a molecular docking simulation. Seven components in Qingdai were selected and 32 candidate Qingdai targets were identified; these were more frequently involved in cytokine-cytokine receptor interaction, cell cycle, p53 signaling pathway, MAPK signaling pathway, and immune system-related pathways, which all play important roles in the progression of CML. Finally, the molecular docking simulation showed that 23 pairs of chemical components and candidate Qingdai targets had effective binding. This network-based pharmacology study suggests that Qingdai acts through the regulation of candidate targets to interfere with CML and thus regulates the occurrence and development of CML.
Collapse
Affiliation(s)
- Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Lijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Jing Yang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Gongxi Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Qingliang Lv
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Changgang Sun
- Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
20
|
Zhou C, Liu L, Zhuang J, Wei J, Zhang T, Gao C, Liu C, Li H, Si H, Sun C. A Systems Biology-Based Approach to Uncovering Molecular Mechanisms Underlying Effects of Traditional Chinese Medicine Qingdai in Chronic Myelogenous Leukemia, Involving Integration of Network Pharmacology and Molecular Docking Technology. Med Sci Monit 2018; 24:4305-4316. [PMID: 29934492 PMCID: PMC6049014 DOI: 10.12659/msm.908104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The method of multiple targets overall control is increasingly used to predict the main active ingredient and potential target group of Chinese traditional medicines and to determine the mechanisms involved in their curative effects. Qingdai is the main traditional Chinese medicine used in the treatment of chronic myelogenous leukemia (CML), but the complex active ingredients and antitumor targets in treatment of CML have not been clearly defined in previous studies. Material/Methods We constructed a protein-protein interaction network diagram of CML with 638 nodes (proteins) and 1830 edges, based on the biological function of chronic myelocytic leukemia by use of Cytoscape, and we determined 19 key gene nodes in the CML molecule by network topological properties analysis in a data bank. Then, we used the Surflex-dock plugin in SYBYL7.3 docking and acquired the protein crystal structures of key genes involved in CML from the chemical composition of the traditional Chinese medicine Qingdai with key proteins in CML networks. Results According to the score and the spatial structure, the pharmacodynamically active ingredients of Qingdai are Isdirubin, Isoindigo, N-phenyl-2-naphthylamine, and Isatin, among which Isdirubin is the most important. We further screened the most effective activity key protein structures of CML to find the best pharmacodynamically active ingredients of Qingdai, according to the binding interactions of the inhibitors at the catalytic site performed in best docking combinations. Conclusions The results suggest that Isdirubin plays a role in resistance to CML by altering the expressions of PIK3CA, MYC, JAK2, and TP53 target proteins. Network pharmacology and molecular docking technology can be used to search for possible reactive molecules in traditional chinese medicines (TCM) and to elucidate their molecular mechanisms.
Collapse
Affiliation(s)
- Chao Zhou
- Cancer Center, WeiFang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - LiJuan Liu
- Cancer Center, WeiFang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Jing Zhuang
- Cancer Center, WeiFang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - JunYu Wei
- Cancer Center, WeiFang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - TingTing Zhang
- Clinical Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - ChunDi Gao
- Clinical Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Cun Liu
- Clinical Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - HuaYao Li
- Clinical Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - HongZong Si
- Department of Public Health, Qingdao University, Qingdao, Shandong, China (mainland)
| | - ChangGang Sun
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
21
|
STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma. Oncotarget 2018; 9:16792-16806. [PMID: 29682185 PMCID: PMC5908286 DOI: 10.18632/oncotarget.24698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare, aggressive, heterogeneous, Non-Hodgkin's lymphoma with poor prognosis and inadequate response to current therapies. Recent sequencing studies indicate a prevalence of activating mutations in the JAK/STAT signaling pathway. Oncogenic mutations in STAT5B, observed in approximately one third of cases of multiple different PTCL subtypes, correlate with inferior patient outcomes. Therefore, interest in the development of therapeutic strategies for targeting STAT5 in PTCL is warranted. In this study, we show that the drug pimozide inhibits STAT5 in PTCL, leading to apoptotic cell death by means of the TRAIL/DR4 dependent extrinsic apoptotic pathway. Pimozide induced PTCL cell death is caspase 8 dependent, increases the expression of the TRAIL receptor, DR4, on the surface of pre-apoptotic PTCL cells, and enhances TRAIL induced apoptosis in a TRAIL dependent manner. In parallel, we show that mRNA and protein levels of intrinsic pathway BCL-2 family members and mitochondrial membrane potential remain unaffected by STAT5 knockdown and/or inhibition. In primary PTCL patient samples, pimozide inhibits STAT5 activation and induces apoptosis. Our data support a role for STAT5 inhibition in PTCL and implicate potential utility for inhibition of STAT5 and activation of the extrinsic apoptotic pathway as combination therapy in PTCL.
Collapse
|
22
|
Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia 2018; 32:1135-1146. [PMID: 29472718 PMCID: PMC5940656 DOI: 10.1038/s41375-017-0005-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
The transcription factor STAT5 is an essential downstream mediator of many tyrosine kinases (TKs), particularly in hematopoietic cancers. STAT5 is activated by FLT3-ITD, which is a constitutively active TK driving the pathogenesis of acute myeloid leukemia (AML). Since STAT5 is a critical mediator of diverse malignant properties of AML cells, direct targeting of STAT5 is of significant clinical value. Here, we describe the development and preclinical evaluation of a novel, potent STAT5 SH2 domain inhibitor, AC-4–130, which can efficiently block pathological levels of STAT5 activity in AML. AC-4–130 directly binds to STAT5 and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent gene transcription. Notably, AC-4–130 substantially impaired the proliferation and clonogenic growth of human AML cell lines and primary FLT3-ITD+ AML patient cells in vitro and in vivo. Furthermore, AC-4–130 synergistically increased the cytotoxicity of the JAK1/2 inhibitor Ruxolitinib and the p300/pCAF inhibitor Garcinol. Overall, the synergistic effects of AC-4–130 with TK inhibitors (TKIs) as well as emerging treatment strategies provide new therapeutic opportunities for leukemia and potentially other cancers.
Collapse
|
23
|
Jia J, Qin Y, Zhang L, Guo C, Wang Y, Yue X, Qian J. Sijunzi decoction-treated rat serum induces apoptosis of side population cells in gastric carcinoma. Exp Ther Med 2017; 15:1718-1727. [PMID: 29399136 DOI: 10.3892/etm.2017.5560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/25/2016] [Indexed: 12/14/2022] Open
Abstract
Sijunzi decoction (SJZD) is a traditional Chinese herbal medicine. Previous studies have indicated that SJZD exhibits antitumor activity. However, the underlying molecular mechanism has not been fully elucidated. To explore the antitumor mechanism of SJZD, the effects of serum from rats treated with SJZD on the proliferation of MKN-28 and HGC-27 gastric carcinoma cell lines were systematically investigated. It was found that SJZD-treated rat serum significantly inhibited the growth of MKN-28 and HGC-27 cells in vitro. The results obtained from a colony formation assay showed that SJZD-treated rat serum decreased the colony formation ability of MKN-28 and HGC-27 cells. The apoptosis rate in MKN-28 and HGC-27 cells was also increased following treatment with SJZD-treated rat serum. Flow cytometry with cell sorting revealed the presence of side population (SP) cells in MKN-28 and HGC-27 cells though Hoechst 33342 staining, and verapamil reduced the SP percentage. Further analysis showed that SJZD-treated rat serum promoted the apoptosis of SP cells in MKN-28 and HGC-27 cell lines by upregulating Bax, caspase-3 and PARP and downregulating bcl-2. These data revealed the therapeutic effect of SJZD-treated rat serum on gastric carcinoma. Following the preliminary identification of the inhibitory effect on the growth of gastric cancer cells in vitro, the growth inhibitory effect of SJZD-treated rat serum on SP cells was confirmed, and this inhibition particularly involved the induction of cell apoptosis.
Collapse
Affiliation(s)
- Jianguang Jia
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Yiyu Qin
- Department of Science and Technology, Jiading Central Hospital, Shanghai 201800, P.R. China.,Department of Science and Technology, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Ligong Zhang
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Chenxu Guo
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Yaguo Wang
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Xicheng Yue
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| | - Jun Qian
- Department of Oncology Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233003, P.R. China
| |
Collapse
|
24
|
Orlova A, Wingelhofer B, Neubauer HA, Maurer B, Berger-Becvar A, Keserű GM, Gunning PT, Valent P, Moriggl R. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets 2017; 22:45-57. [PMID: 29148847 PMCID: PMC5743003 DOI: 10.1080/14728222.2018.1406924] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools.
Collapse
Affiliation(s)
- Anna Orlova
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Bettina Wingelhofer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Heidi A Neubauer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Barbara Maurer
- c Institute of Pharmacology and Toxicology , University of Veterinary Medicine Vienna , Vienna , Austria
| | - Angelika Berger-Becvar
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - György Miklós Keserű
- d Medicinal Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Budapest , Hungary
| | - Patrick T Gunning
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - Peter Valent
- e Department of Internal Medicine I, Division of Hematology and Hemostaseology , Medical University of Vienna , Vienna , Austria.,f Ludwig Boltzmann-Cluster Oncology , Medical University of Vienna , Vienna , Austria
| | - Richard Moriggl
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria.,i Medical University Vienna , Vienna , Austria
| |
Collapse
|
25
|
Cheng X, Peuckert C, Wölfl S. Essential role of mitochondrial Stat3 in p38 MAPK mediated apoptosis under oxidative stress. Sci Rep 2017; 7:15388. [PMID: 29133922 PMCID: PMC5684365 DOI: 10.1038/s41598-017-15342-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
Stat3 is an oncogene, frequently associated with malignant transformation. A body of evidence implicates that phospho-Stat3Y705 contributes to its nucleic translocation, while phospho-Stat3S727 leads to the accumulation in mitochondria. Both are of importance for tumor cell proliferation. In comparison to well-characterized signaling pathways interplaying with Stat3Y705, little is known about Stat3S727. In this work, we studied the influence of Stat3 deficiency on the viability of cells exposed to H2O2 or hypoxia using siRNA and CRISPR/Cas9 genome-editing. We found dysregulation of mitochondrial activity, which was associated with excessive ROS formation and reduced mitochondrial membrane potential, and observed a synergistic effect for oxidative stress-mediated apoptosis in Stat3-KD cells or cells carrying Stat3Y705F, but not Stat3S727D, suggesting the importance of functional mitochondrial Stat3 in this context. We also found that ROS-mediated activation of ASK1/p38MAPK was involved and adding antioxidants, p38MAPK inhibitor, or genetic repression of ASK1 could easily rescue the cellular damage. Our finding reveals a new role of mitochondrial Stat3 in preventing ASK1/p38MAPK-mediated apoptosis, wich further support the notion that selective inhibition mitochondrial Stat3 could provide a primsing target for chemotherapy.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - Christiane Peuckert
- Department of Organismal Biology, Uppsala University, Uppsala, S-75236, Sweden
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Methylisoindigo and Its Bromo-Derivatives Are Selective Tyrosine Kinase Inhibitors, Repressing Cellular Stat3 Activity, and Target CD133+ Cancer Stem Cells in PDAC. Molecules 2017; 22:molecules22091546. [PMID: 32961646 PMCID: PMC6151689 DOI: 10.3390/molecules22091546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Indirubin is an active component of the herbal ingredient ‘Danggui Longhui wan’, which was used for the treatment of inflammation and chronic myeloid leukemia in China. The recent study showed its derivative methylisoindigo (also known as meisoindigo) preferentially targeting cancer stem cells (CSCs) in interference with AMPK and LKB1, the cellular metabolic sensors. In this study, we screened the effect of meisoindigo on a panel of 300 protein kinases and found that it selectively inhibited Stat3-associated tyrosine kinases and further confirmed its activity in cell based assays. To gain a deeper insight into the structure–activity relationship we produced 7 bromo-derivatives exhausting the accessible positions on the bisindole backbone except for in the 4-position due to the space limitation. We compared their anti-proliferative effects on tumor cells. We found that 6-bromomeisoindigo showed improved toxicity in company with increased Stat3 inhibition. Moreover, we detected that 6-bromomeisoindigo induced apoptosis of 95% of CD133+ pancreatic cancer cells. Considering that CD133 is a common marker highly expressed in a range of CSCs, our results imply the potential application of 6-bromomeisoindigo for the treatment of CSCs in different types of cancers.
Collapse
|
27
|
Cheng X, Merz KH, Vatter S, Zeller J, Muehlbeyer S, Thommet A, Christ J, Wölfl S, Eisenbrand G. Identification of a Water-Soluble Indirubin Derivative as Potent Inhibitor of Insulin-like Growth Factor 1 Receptor through Structural Modification of the Parent Natural Molecule. J Med Chem 2017; 60:4949-4962. [PMID: 28557430 DOI: 10.1021/acs.jmedchem.7b00324] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Indirubins have been identified as potent ATP-competitive protein kinase inhibitors. Structural modifications in the 5- and 3'-position have been extensively investigated, but the impact of substituents in 5'-position is not equally well-studied. Here, we report the synthesis of new indirubin 3'- and 5'-derivatives in the search of water-soluble indirubins by introducing basic centers. Antiproliferative activity of all compounds in tumor cells was evaluated along with kinase inhibition of selected compounds. The results show the 3'-position to tolerate large substituents without compromising activity, whereas bulk and rigid substituents in 5'-position appear unfavorable. Screening molecular targets of water-soluble 3'-oxime ethers revealed 6ha as preferential inhibitor of insulin-like growth factor 1 receptor (IGF-1R) in a panel of 22 protein kinases and in cells. Consistently, 6ha inhibited tumor cell growth in the NCI 60 cell line panel and induced apoptosis. The results indicate that the 5'-position provides limited space for chemical modifications and identify 6ha as a potent water-soluble indirubin-based IGF-1R inhibitor.
Collapse
Affiliation(s)
- Xinlai Cheng
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany.,Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Karl-Heinz Merz
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Sandra Vatter
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Jochen Zeller
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Stephan Muehlbeyer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Andrea Thommet
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Jochen Christ
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| | - Stefan Wölfl
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern , Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany
| |
Collapse
|
28
|
Keller A, Wingelhofer B, Peter B, Bauer K, Berger D, Gamperl S, Reifinger M, Cerny-Reiterer S, Moriggl R, Willmann M, Valent P, Hadzijusufovic E. The JAK2/STAT5 signaling pathway as a potential therapeutic target in canine mastocytoma. Vet Comp Oncol 2017; 16:55-68. [PMID: 28397975 DOI: 10.1111/vco.12311] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 01/31/2017] [Accepted: 03/06/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Mastocytoma are frequently diagnosed cutaneous neoplasms in dogs. In non-resectable mastocytoma patients, novel targeted drugs are often applied. The transcription factor STAT5 has been implicated in the survival of human neoplastic mast cells (MC). Our study evaluated the JAK2/STAT5 pathway as a novel target in canine mastocytoma. MATERIALS AND METHODS We employed inhibitors of JAK2 (R763, TG101348, AZD1480, ruxolitinib) and STAT5 (pimozide, piceatannol) and evaluated their effects on 2 mastocytoma cell lines, C2 and NI-1. RESULTS Activated JAK2 and STAT5 were detected in both cell lines. The drugs applied were found to inhibit proliferation and survival in these cells with the following rank-order of potency: R763 > TG101348 > AZD1480 > pimozide > ruxolitinib > piceatannol. Moreover, synergistic anti-neoplastic effects were obtained by combining pimozide with KIT-targeting drugs (toceranib, masitinib, nilotinib, midostaurin) in NI-1 cells. CONCLUSION The JAK2/STAT5 pathway is a novel potential target of therapy in canine mastocytoma.
Collapse
Affiliation(s)
- Alexandra Keller
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - Barbara Peter
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Daniela Berger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Susanne Gamperl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Martin Reifinger
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Cerny-Reiterer
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, Vienna, Austria
| | - Michael Willmann
- Department of Companion Animals and Horses, Small Animal Clinic, Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.,Department of Companion Animals and Horses, Small Animal Clinic, Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
29
|
Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget 2017; 8:3724-3745. [PMID: 27741508 PMCID: PMC5356914 DOI: 10.18632/oncotarget.12554] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms.
Collapse
Affiliation(s)
- David T Hoang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Department of Medicine, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William See
- Department of Urology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology/Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Yin B, Huang P, Lu Y, Liu L. TEMPO-catalyzed oxidative homocoupling route to 3,2′-biindolin-2-ones via an indolin-3-one intermediate. RSC Adv 2017. [DOI: 10.1039/c6ra24834a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A combinative C2 arylation and C3 carbonylation of free indoles using TEMPO catalysis and silver oxidant under non-directing group conditions was successful demonstrated. This new methodology is both atom and step efficient and is applicable to a broad scope of substrates.
Collapse
Affiliation(s)
- Bo Yin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Panpan Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Yingbing Lu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- PR China
| |
Collapse
|
32
|
Cheng X, Merz KH. The Role of Indirubins in Inflammation and Associated Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:269-290. [DOI: 10.1007/978-3-319-41342-6_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL. Sci Rep 2016; 6:28352. [PMID: 27329306 PMCID: PMC4916441 DOI: 10.1038/srep28352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.
Collapse
|
34
|
Wu X, Chen X, Dan J, Cao Y, Gao S, Guo Z, Zerbe P, Chai Y, Diao Y, Zhang L. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification. Sci Rep 2016; 6:25491. [PMID: 27150638 PMCID: PMC4858665 DOI: 10.1038/srep25491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.
Collapse
Affiliation(s)
- Xunxun Wu
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jia Dan
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shouhong Gao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiying Guo
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yifeng Chai
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yong Diao
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Lei Zhang
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
35
|
Huo X, Liao Y, Tian Y, Gao L, Cao L. Zeylenone promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving Jak2 and Src kinase. RSC Adv 2016. [DOI: 10.1039/c6ra23443g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematopoietic malignancy caused by the constitutive activation of BCR–ABL tyrosine kinase.
Collapse
Affiliation(s)
- Xiaowei Huo
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Yonghong Liao
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Yu Tian
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Li Gao
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| | - Li Cao
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100193
- China
| |
Collapse
|
36
|
Langenfeld F, Guarracino Y, Arock M, Trouvé A, Tchertanov L. How Intrinsic Molecular Dynamics Control Intramolecular Communication in Signal Transducers and Activators of Transcription Factor STAT5. PLoS One 2015; 10:e0145142. [PMID: 26717567 PMCID: PMC4696835 DOI: 10.1371/journal.pone.0145142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Signal Transducer and Activator of Transcription STAT5 is a key mediator of cell proliferation, differentiation and survival. While STAT5 activity is tightly regulated in normal cells, its constitutive activation directly contributes to oncogenesis and is associated with a broad range of hematological and solid tumor cancers. Therefore the development of compounds able to modulate pathogenic activation of this protein is a very challenging endeavor. A crucial step of drug design is the understanding of the protein conformational features and the definition of putative binding site(s) for such modulators. Currently, there is no structural data available for human STAT5 and our study is the first footprint towards the description of structure and dynamics of this protein. We investigated structural and dynamical features of the two STAT5 isoforms, STAT5a and STAT5b, taken into account their phosphorylation status. The study was based on the exploration of molecular dynamics simulations by different analytical methods. Despite the overall folding similarity of STAT5 proteins, the MD conformations display specific structural and dynamical features for each protein, indicating first, sequence-encoded structural properties and second, phosphorylation-induced effects which contribute to local and long-distance structural rearrangements interpreted as allosteric event. Further examination of the dynamical coupling between distant sites provides evidence for alternative profiles of the communication pathways inside and between the STAT5 domains. These results add a new insight to the understanding of the crucial role of intrinsic molecular dynamics in mediating intramolecular signaling in STAT5. Two pockets, localized in close proximity to the phosphotyrosine-binding site and adjacent to the channel for communication pathways across STAT5, may constitute valid targets to develop inhibitors able to modulate the function-related communication properties of this signaling protein.
Collapse
Affiliation(s)
- Florent Langenfeld
- Laboratoire de Biologie et Pharmacologie Appliquée Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
- Centre de Mathématiques et de Leurs applications, Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
| | - Yann Guarracino
- Laboratoire de Biologie et Pharmacologie Appliquée Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
| | - Michel Arock
- Laboratoire de Biologie et Pharmacologie Appliquée Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
| | - Alain Trouvé
- Centre de Mathématiques et de Leurs applications, Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
| | - Luba Tchertanov
- Centre de Mathématiques et de Leurs applications, Ecole Normale Supérieure de Cachan, CNRS, Université Paris-Saclay, Cachan, France
- * E-mail:
| |
Collapse
|
37
|
Natural compounds for pediatric cancer treatment. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:131-49. [DOI: 10.1007/s00210-015-1191-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
|
38
|
Broecker-Preuss M, Becher-Boveleth N, Gall S, Rehmann K, Schenke S, Mann K. Induction of atypical cell death in thyroid carcinoma cells by the indirubin derivative 7-bromoindirubin-3'-oxime (7BIO). Cancer Cell Int 2015; 15:97. [PMID: 26464561 PMCID: PMC4603293 DOI: 10.1186/s12935-015-0251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The indirubin derivative 7-bromoindirubin-3'-oxime (7BIO) has already shown anticancer properties by causing cell death in some tumour cell lines and may be a new therapeutic option for treatment-resistant tumour cells. Since dedifferentiated and anaplastic thyroid carcinomas do not take up radioiodine and are insensitive to chemotherapeutic treatment and external radiation, direct cell death induction in these tumour cells may be a promising approach. We thus investigated the effect of 7BIO on thyroid carcinoma cell lines of different histological origins and characterized the type of cell death induction by 7BIO. METHODS Cell viability was measured with MTT assay. Cell death was analysed by caspase 3/7 activity, lactate dehydrogenase liberation, caspase cleavage products, DNA fragmentation, cell cycle phase distribution and LC3B analysis. RESULTS After 7BIO treatment, cell viability was reduced in all 14 thyroid carcinoma cell lines investigated. Treated cells showed DNA fragmentation, cell cycle arrest and lactate dehydrogenase liberation but no LC3B cleavage. Caspase activation following 7BIO treatment was found in five of six cell lines investigated. Interestingly, inhibition of caspases had no effect on viability of the cells after 7BIO incubation. CONCLUSIONS Our results indicate that 7BIO efficiently killed dedifferentiated thyroid carcinoma cells. It induced a non-classical kind of cell death that was caspase-independent and includes DNA fragmentation. 7BIO and related indirubin components thus may have value as a new therapeutic option for dedifferentiated thyroid cancer irrespective of the exact target molecules and the kind of cell death they induce.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Nina Becher-Boveleth
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susanne Gall
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Katrin Rehmann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susann Schenke
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Klaus Mann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Center of Endocrinology Alter Hof München, Dienerstr. 12, Munich, Germany
| |
Collapse
|
39
|
E804 induces growth arrest, differentiation and apoptosis of glioblastoma cells by blocking Stat3 signaling. J Neurooncol 2015; 125:265-75. [DOI: 10.1007/s11060-015-1917-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
|
40
|
Indirubin and Indirubin Derivatives for Counteracting Proliferative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:654098. [PMID: 26457112 PMCID: PMC4589628 DOI: 10.1155/2015/654098] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Indirubin is the active component of Danggui Longhui Wan, a traditional Chinese medicine formulation. The encouraging clinical results from the 1980s obtained in chronic myelocytic leukemia patients treated with indirubin stimulated numerous studies on this compound. These investigations explored the use of indirubin in different types of cancer and reported the synthesis of novel derivatives with improved chemical and pharmacokinetic properties. In this paper, we review the impressive progress that has been made in elucidating the mechanistic understanding of how indirubin and its derivatives affect physiological and pathophysiological processes, mainly by inhibition of cell proliferation and induction of cell death. Furthermore, we survey the therapeutic use of these compounds in combating proliferative diseases such as cancer, restenosis, and psoriasis.
Collapse
|
41
|
Shu G, Zhao W, Yue L, Su H, Xiang M. Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:237-247. [PMID: 25858511 DOI: 10.1016/j.jep.2015.03.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia chinensis Benth (S. chinensis) is a traditional herb applied in the treatment of hepatocellular carcinoma (HCC). Polysaccharides abundantly exist in this plant. However, it remains poorly understood if polysaccharides from S. chinensis (PSSC) contribute to its anti-HCC activity. MATERIALS AND METHODS The in vivo anti-HCC activity of PSSC was evaluated in Kunming mice bearing H22 ascitic hepatoma cells. An array of physiological indexes was measured to evaluate toxicological effects on host animals. Subgroups of immune cells were purified by a magnetic-activated cell sorting system and analyzed by flow cytometry. Reverse transcription real-time PCR and immunoblotting were recruited to determine the effects of PSSC on the cellular signaling of different subgroup of immune cells. RESULTS PSSC suppressed in vivo proliferation of H22 cells with undetectable toxic effects on tumor-bearing mice. PSSC alleviated tumor transplantation-induced CD4+ T cell apoptosis and dysregulation of serum cytokine profiles, which elevated cytotoxic activities of natural killer and CD8+ T cells. PSSC reduced serum levels of prostaglandin E2 (PGE2). Injection of exogenous PGE2 completely abrogated the antitumor immunostimulatory activity of PSSC. Cyclic adenosine monophosphate (cAMP) is the second messager of PGE2. In CD4+ T cells, PSSC substantially declined intracellular cAMP. This event elevated protein levels of JAK3, enhancing STAT5 phosphorylation and STAT5-dependent expression of anti-apoptotic genes. Cyclooxygenase-2 is the key enzyme mediating biosynthesis of PGE2. PSSC suppressed the transcription and translation of cyclooxygenase-2 in tumor associated macrophages. CONCLUSION Our data clearly showed antitumor immunostimulatory activity of PSSC against transplanted H22 HCC cells. Suppressing tumor transplantation-induced PGE2 production was implicated in the anti-tumor immunostimulatory activity of PSSC. These works provides novel insights into the traditional application of S. chinensis against HCC and supported considering PSSC as an adjuvant reagent in clinical HCC treatment.
Collapse
Affiliation(s)
- Guangwen Shu
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Wenhao Zhao
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | - Ling Yue
- Endocrinology department, Wuhan General Hospital of Guangzhou Military Command, Wuhan, PR China
| | - Hanwen Su
- Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Meixian Xiang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
42
|
Liao Z, Gu L, Vergalli J, Mariani SA, De Dominici M, Lokareddy RK, Dagvadorj A, Purushottamachar P, McCue PA, Trabulsi E, Lallas CD, Gupta S, Ellsworth E, Blackmon S, Ertel A, Fortina P, Leiby B, Xia G, Rui H, Hoang DT, Gomella LG, Cingolani G, Njar V, Pattabiraman N, Calabretta B, Nevalainen MT. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol Cancer Ther 2015; 14:1777-93. [PMID: 26026053 DOI: 10.1158/1535-7163.mct-14-0883] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenny Vergalli
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ravi K Lokareddy
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Puranik Purushottamachar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shauna Blackmon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Guanjun Xia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gino Cingolani
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincent Njar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nagarajan Pattabiraman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
43
|
Indirubin 3′-(O-oxiran-2-ylmethyl)oxime: A novel anticancer agent. Bioorg Med Chem Lett 2015; 25:1403-6. [DOI: 10.1016/j.bmcl.2015.02.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 01/01/2023]
|
44
|
Wang L, Li X, Liu X, Lu K, Chen NA, Li P, Lv X, Wang X. Enhancing effects of indirubin on the arsenic disulfide-induced apoptosis of human diffuse large B-cell lymphoma cells. Oncol Lett 2015; 9:1940-1946. [PMID: 25789073 PMCID: PMC4356417 DOI: 10.3892/ol.2015.2941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the indirubin-enhanced effects of arsenic disulfide (As2S2) on the proliferation and apoptosis of diffuse large B-cell lymphoma (DLBCL) cells in order to identify an optimum combination therapy. The human DLBCL cells, LY1 and LY8, were treated with different concentrations of indirubin for 24, 48 and 72 h. Next, the cells were treated with 10 μM As2S2 or a combination of 10 μM As2S2 and 20 μM indirubin for 48 h. Cell proliferation inhibition was detected using cell counting kit-8 and cell apoptosis was determined using flow cytometry. The expression levels of Bcl-2, Bcl-2-associated X protein (Bax) and caspase-3 were analyzed by quantitative polymerase chain reaction (qPCR) and western blotting. The DLBCL cell viability exhibited no significant changes at 24, 48 or 72 h with increasing indirubin concentration. In addition, the apoptotic rates of the LY1 and LY8 cells demonstrated no noticeable effects at 48 h with increasing indirubin concentration. Following treatment with the combination of indirubin and As2S2, the inhibitory and apoptotic rates of the cells were notably increased compared with those of the As2S2-treated group. The qPCR results revealed that indirubin alone had no enhancing effect upon the Bax/Bcl-2 mRNA expression ratio and caspase-3 mRNA expression. Western blot analysis revealed that indirubin alone had an enhancing effect upon the Bax/Bcl-2 protein ratio and procaspase-3 protein expression. In addition, the results demonstrated that the 21-KDa Bax protein was proteolytically cleaved into an 18-KDa Bax in the DLBCL cells treated with the combination of indirubin and As2S2. Indirubin alone did not inhibit proliferation or induce the apoptosis of the LY1 and LY8 cells. However, the combination of indirubin and As2S2 yielded enhancing effects. Therefore, the results of the present study demonstrated that with regard to antitumor activities, As2S2 served as the principal drug, whereas indirubin served as the adjuvant drug. The enhancing effect was due, in part, to the induction of the mitochondrial apoptotic pathway, which involves the cleavage of Bax.
Collapse
Affiliation(s)
- Ling Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of Hematology, Taian City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xianglu Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xinyu Liu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - N A Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Institute of Diagnostics, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
45
|
Ku M, Wall M, MacKinnon RN, Walkley CR, Purton LE, Tam C, Izon D, Campbell L, Cheng HC, Nandurkar H. Src family kinases and their role in hematological malignancies. Leuk Lymphoma 2015; 56:577-86. [PMID: 24898666 DOI: 10.3109/10428194.2014.907897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Src family protein tyrosine kinases (SFKs) are non-receptor intracellular kinases that have important roles in both hematopoiesis and leukemogenesis. The derangement of their expression or activation has been demonstrated to contribute to hematological malignancies. This review first examines the mechanisms of SFK overexpression and hyperactivation, emphasizing the dysregulation of the upstream modulators. Subsequently, the role of SFK up-regulation in the initiation, progression and therapy resistance of many hematological malignancies is also analyzed. The presented evidence endeavors to highlight the influence of SFK up-regulation on an extensive number of hematological malignancies and the need to consider them as candidates in targeted anticancer therapy.
Collapse
Affiliation(s)
- Matthew Ku
- Haematology Department and Victorian Cancer Cytogenetics Service, St Vincent's Hospital , Fitzroy , Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Signal transducer and activator of transcription 5a inhibited by pimozide may regulate survival of goat mammary gland epithelial cells by regulating parathyroid hormone-related protein. Gene 2014; 551:279-89. [DOI: 10.1016/j.gene.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/17/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022]
|
47
|
Heshmati N, Cheng X, Dapat E, Sassene P, Eisenbrand G, Fricker G, Müllertz A. In vitro and in vivo evaluations of the performance of an indirubin derivative, formulated in four different self-emulsifying drug delivery systems. J Pharm Pharmacol 2014; 66:1567-75. [DOI: 10.1111/jphp.12286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Anticancer indirubins are poorly soluble in water. Here, digestion of four self-emulsifying drug delivery systems (SEDDS) containing E804 (indirubin-3′-oxime 2,3-dihydroxypropyl ether) was compared by dynamic lipolysis and bioavailability studies. Used lipids were either medium-chain or long-chain glycerides.
Methods
SEDDS E804 were developed. In-vitro lipolysis was carried out at pH 6.5 (37°C) by adding pancreatic lipase (800 U/ml) and controlling by CaCl2 and NaOH addition. E804 content was quantified in the aqueous micellar phase and precipitate using HPLC. Oral bioavailability was determined in rats. Plasma drug content was determined by liquid chromatography (LC)–mass spectrometry.
Key findings
All formulations reserved E804 in the aqueous micellar phase up to 60 min. Precipitation proceeded towards the end of lipolysis up to 45%. Lowest level of precipitation (21%) occurred with long-chain lipids (LC-SEDDS). However, lipolysis was not really discriminative between formulations as the drug mainly stayed in solution. Oral administration of formulations resulted in similar bioavailability of E804 with no significantly different area under the concentration curve. Only medium-chain self-nanoemulsifying drug delivery systems revealed shorter Tmax compared with the other formulations.
Conclusion
E804 had a similar performance in four lipid/surfactant systems. All formulations increased the bioavailability of E804 with no significant difference.
Collapse
Affiliation(s)
- Nasim Heshmati
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Else Dapat
- Department of Biology, University of the Philippines, Manila, Philippines
| | - Philip Sassene
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Anette Müllertz
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
A colorful history: the evolution of indigoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:69-145. [PMID: 25296438 DOI: 10.1007/978-3-319-04900-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611-29. [PMID: 23903221 DOI: 10.1038/nrd4088] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials.
Collapse
|
50
|
The one-two punch: Combination treatment in chronic myeloid leukemia. Crit Rev Oncol Hematol 2013; 88:667-79. [DOI: 10.1016/j.critrevonc.2013.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/31/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
|