1
|
Keskin E, Erdogan A, Suleyman H, Yazici GN, Sunar M, Gul MA. Effect of sunitinib on testicular oxidative and proinflammatory damage induced by ischemia-reperfusion in rats. Rev Int Androl 2022; 20 Suppl 1:S17-S23. [PMID: 34172383 DOI: 10.1016/j.androl.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/10/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION This study aimed to biochemically and histopathologically investigate the effect of sunitinib on oxidative testicular damage induced by ischemia/reperfusion in rats. MATERIAL-METHOD Experimental animals were divided into three groups of six rats each: testicular torsion-detorsion (TTD), sunitinib+testicular torsion-detorsion (STD), and sham control (SC). Sunitinib (25mg/kg) was administered orally to the STD group by gavage. Normal saline (0.9% NaCl) was administered orally to the TTD and control groups as the solvent. One hour after administration of sunitinib and 0.9% NaCl, all animal groups were done torsion-detorsion. Then, all the rats were killed by high-dose anesthesia, and their testicles were removed. Biochemical and histopathological examinations were performed on the removed testicular tissues. RESULTS Malondialdehyde; it was observed that the results in the STD group were close to those of the SC group and statistically significant lower compared to the TTD group (p=0.001). The glutathione values were statistically significantly higher in the STD group compared to the TTD group (p<0.001). Nuclear factor kappa B values, revealing a statistically significant difference between the TTD and STD groups (p<0.001). The TNF-α levels were measured and indicating that the results of the STD group were statistically significantly lower than those of the TTD group (p<0.001). Histopathologically, animal tissues given sunitinib were observed to resemble normal tissues. CONCLUSION Sunitinib was shown to prevent histopathological changes in testicular tissue against ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Ercument Keskin
- Erzincan Binali Yildirim University Faculty of Medicine, Department of Urology, Turkey.
| | - Abdullah Erdogan
- Erzincan Binali Yildirim University Faculty of Medicine, Department of Urology, Turkey
| | - Halis Suleyman
- Erzincan Binali Yildirim University Faculty of Medicine, Department of Pharmacology, Turkey
| | - Gulce Naz Yazici
- Erzincan Binali Yildirim University Faculty of Medicine, Department of Histology and Embryology, Turkey
| | - Mukadder Sunar
- Erzincan Binali Yildirim University Faculty of Medicine, Department of Anatomy, Turkey
| | - Mehmet Ali Gul
- Atatürk University, Faculty of Medicine, Department of Clinical Biochemistry, Turkey
| |
Collapse
|
2
|
Bilici S, Yazici GN, Altuner D, Aggul AG, Suleyman H. Effect of Sunitinib on Liver Oxidative and Proinflammatory Damage Induced by Ischemia-Reperfusion in Rats. Transplant Proc 2021; 53:2140-2146. [PMID: 34417031 DOI: 10.1016/j.transproceed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury is defined as a complex pathologic process that begins with the oxygen deprivation of tissue, continues with the production of reactive oxygen radicals (ROS), and expands with an inflammatory response. This study investigates the protective effects of sunitinib, an anticancer drug with demonstrated antioxidant and anti-inflammatory activity, against liver IR damage. Our study aims to investigate the biochemical and histopathologic effects of sunitinib on IR-induced liver damage in rats. METHODS Albino Wistar male rats were divided into 3 groups: liver IR control (IR), 25 mg/kg sunitinib + liver IR (S+IR), and sham operation (SHAM). RESULTS In the liver tissue of the IR group, oxidant and proinflammatory cytokine levels such as malondialdehyde, nuclear factor κ B, tumor necrosis factor-α, and interleukin-1β increased compared with the SHAM and S+IR groups. In addition, antioxidant levels such as total glutathione, glutathione reductase, and glutathione peroxidase were found to be significantly lower in the IR group than in the SHAM and S+IR groups. Although severe histopathologic damage was observed in the IR group, it was evaluated as mild in the S+IR group. The results obtained suggest that sunitinib may be helpful in the treatment of liver IR injury.
Collapse
Affiliation(s)
- Sami Bilici
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Gokhan Aggul
- Department of Biochemistry, Faculty of Pharmacy, Ibrahim Cecen University, Agri, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
3
|
Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020; 17:1597-1613. [PMID: 32835538 DOI: 10.1080/17425247.2020.1814733] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The use of nanoparticles for breast cancer targeting and treatment has become a reality. They are safe and possess interesting peculiarities such as the unspecific accumulation into the tumor site and the possibility to activate controlled drug release as compared to free drugs. However, there are still many areas of improvement which can certainly be addressed with the use of peptide-based elements. AREAS COVERED The article reviews different preclinical strategies employing peptides and proteins in combination with nanoparticles for breast cancer targeting and treatment as well as peptide and protein-targeted encapsulated drugs, and it lists the current clinical status of therapies using peptides and proteins for breast cancer. EXPERT OPINION The conjugation of protein and peptides can improve tumor homing of nanoparticles, increase cellular penetration and attack specific drivers and vulnerabilities of the breast cancer cell to promote tumor cytotoxicity while reducing secondary effects in healthy tissues. Examples are the use of antibodies, arginylglycylaspartic acid (RGD) peptides, membrane disruptive peptides, interference peptides, and peptide vaccines. Although their implementation in the clinic has been relatively slow up to now, we anticipate great progress in the field which will translate into more efficacious and selective nanotherapies for breast cancer.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Maria Alba Sorolla
- Biomedical Research Institute (IRB Lleida), Research Group of Cancer Biomarkers , Lleida, Spain
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad De Castilla-La Mancha , Albacete, Spain.,Centro De Investigación En Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII , Madrid, Spain
| |
Collapse
|
4
|
Caruana BT, Byrne FL. The NF-κB signalling pathway regulates GLUT6 expression in endometrial cancer. Cell Signal 2020; 73:109688. [PMID: 32512041 DOI: 10.1016/j.cellsig.2020.109688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gene and protein expression of the glucose transporter GLUT6 are elevated in multiple cancers, including endometrial cancer. However, the extrinsic and intrinsic mechanisms that regulate GLUT6 expression in this malignancy are unknown. Herein we investigate the potential mechanisms regulating GLUT6 expression in endometrial cancer. METHODS Data mining of the GLUT6 gene (SLC2A6) in The Cancer Genome Atlas (TCGA) PanCan datasets was performed in cBioPortal. A transcriptome PCR array was used to identify regulators of GLUT6 expression. The role of RELA in regulating GLUT6 gene and protein expression was investigated by overexpressing constitutively active and dominant-negative RELA in endometrial cells. Endometrial cells were treated with the pro-inflammatory cytokine TNFα and the expression of RELA, IκBα, TNFα, and GLUT6 were examined by Western blotting and RT-qPCR. RESULTS GLUT6 is altered in 1% of all cancer samples (157 of 10, 967 samples) within TCGA datasets including 4.7% of uterine (endometrial) cancers. GLUT6 expression was positively co-expressed with multiple members of the NF-κB signalling pathway including NFKB2, RELB, NFKBIE, and TNF in endometrial cancer samples. A transcriptome PCR array identified RELA as the top potential transcriptional regulator of GLUT6 expression. Overexpression of constitutively active RELA increased GLUT6 gene expression in normal endometrial epithelial cells (hUE-Ts), while overexpression of dominant-negative RELA decreased GLUT6 expression in cancerous RL95-2 endometrial cells. TNFα treatment activated canonical NF-κB signalling and increased the expression of GLUT6, but not that of other glucose transporters (GLUTs 1, 3, 4, 8, 10, or 12) in endometrial cells. CONCLUSIONS TNFα is a cytokine that is commonly increased in obesity-related endometrial cancer and the findings herein support a potential mechanism whereby TNFα may contribute to endometrial cancer initiation or progression by increasing GLUT6 expression. Furthermore, we identified RELA, an important downstream mediator of the TNFα signalling cascade, as a regulator of GLUT6 expression in endometrial cells. Future studies are warranted to determine how GLUT6 expression affects endometrial tumourigenesis or cancer progression.
Collapse
Affiliation(s)
- Beth T Caruana
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Mokhtarpour M, Shekaari H, Shayanfar A. Design and characterization of ascorbic acid based therapeutic deep eutectic solvent as a new ion-gel for delivery of sunitinib malate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
From Seabed to Bedside: A Review on Promising Marine Anticancer Compounds. Biomolecules 2020; 10:biom10020248. [PMID: 32041255 PMCID: PMC7072248 DOI: 10.3390/biom10020248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
The marine environment represents an outstanding source of antitumoral compounds and, at the same time, remains highly unexplored. Organisms living in the sea synthesize a wide variety of chemicals used as defense mechanisms. Interestingly, a large number of these compounds exert excellent antitumoral properties and have been developed as promising anticancer drugs that have later been approved or are currently under validation in clinical trials. However, due to the high need for these compounds, new methodologies ensuring its sustainable supply are required. Also, optimization of marine bioactives is an important step for their success in the clinical setting. Such optimization involves chemical modifications to improve their half-life in circulation, potency and tumor selectivity. In this review, we outline the most promising marine bioactives that have been investigated in cancer models and/or tested in patients as anticancer agents. Moreover, we describe the current state of development of anticancer marine compounds and discuss their therapeutic limitations as well as different strategies used to overcome these limitations. The search for new marine antitumoral agents together with novel identification and chemical engineering approaches open the door for novel, more specific and efficient therapeutic agents for cancer treatment.
Collapse
|
7
|
Wang E, Sorolla A. Sensitizing endometrial cancer to ionizing radiation by multi-tyrosine kinase inhibition. J Gynecol Oncol 2019; 31:e29. [PMID: 31912683 PMCID: PMC7189072 DOI: 10.3802/jgo.2020.31.e29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023] Open
Abstract
Objective Endometrial carcinoma is the most frequent gynecological cancer. About 15% of these cancers are of high risk and radiotherapy still remains the most suitable treatment. In this context, agents able to promote radiosensitization are of great interest. Here, we describe for the first time the radiosensitization ability of sunitinib in endometrial carcinoma. Methods Four endometrial carcinoma cell lines were used for the study. The activation of apoptosis signalling pathways and tyrosine kinase receptors were analysed by Western blot, luciferase assays and Immunoprecipitation. Radiosensitization effects were assessed using clonogenic assays. p65 and phosphatase and tensin homolog (PTEN) were upregulated by lentiviral transduction. Results We discovered that ionizing radiation activates the pro-oncogenic proteins and signalling pathways KIT, protein kinase B (AKT), and nuclear factor kappa B (NF-κB) and these activations were abrogated by sunitinib, resulting in a radiosensitization effect. We found out that AKT pathway is greatly involved in this process as PTEN restoration in the PTEN-deficient cell line RL95-2 is sufficient to inhibit AKT, rendering these cells more susceptible to ionizing radiation and sunitinib-induced radiosensitization. In Ishikawa 3-H-12 cells, radiosensitization effects and inhibition of AKT were achieved by PTEN restoration plus treatment with the phosphoinositide-3-kinase inhibitor LY294002. This suggests that endometrial tumors could have different sensitivity degree to radiotherapy and susceptibility to sunitinib-induced radiosensitization depending on their AKT activation levels. Conclusions Our results provide the rationale of using sunitinib as neoadjuvant treatment prior radiotherapy which could be a starting point for the implementation of sunitinib and radiotherapy in the clinic for the treatment of recalcitrant endometrial cancers.
Collapse
Affiliation(s)
- Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
8
|
Sorolla A, Wang E, Golden E, Duffy C, Henriques ST, Redfern AD, Blancafort P. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene 2019; 39:1167-1184. [PMID: 31636382 PMCID: PMC7002299 DOI: 10.1038/s41388-019-1056-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In molecular cancer therapeutics only 10% of known cancer gene products are targetable with current pharmacological agents. Major oncogenic drivers, such as MYC and KRAS proteins are frequently highly overexpressed or mutated in multiple human malignancies. However, despite their key role in oncogenesis, these proteins are hard to target with traditional small molecule drugs due to their large, featureless protein interfaces and lack of deep pockets. In addition, they are inaccessible to large biologicals, which are unable to cross cell membranes. Designer interference peptides (iPeps) represent emerging pharmacological agents created to block selective interactions between protein partners that are difficult to target with conventional small molecule chemicals or with large biologicals. iPeps have demonstrated successful inhibition of multiple oncogenic drivers with some now entering clinical settings. However, the clinical translation of iPeps has been hampered by certain intrinsic limitations including intracellular localization, targeting tissue specificity and pharmacological potency. Herein, we outline recent advances for the selective inhibition of major cancer oncoproteins via iPep approaches and discuss the development of multimodal peptides to overcome limitations of the first generations of iPeps. Since many protein–protein interfaces are cell-type specific, this approach opens the door to novel programmable, precision medicine tools in cancer research and treatment for selective manipulation and reprogramming of the cancer cell oncoproteome.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Emily Golden
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ciara Duffy
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Andrew D Redfern
- School of Medicine, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
9
|
Hou B, Wang G, Gao Q, Wei Y, Zhang C, Wang Y, Huo Y, Yang H, Jiang X, Xi Z. SQSTM1/p62 loss reverses the inhibitory effect of sunitinib on autophagy independent of AMPK signaling. Sci Rep 2019; 9:11087. [PMID: 31366950 PMCID: PMC6668422 DOI: 10.1038/s41598-019-47597-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/19/2019] [Indexed: 02/03/2023] Open
Abstract
Sunitinib (ST), a multitargeted receptor tyrosine kinase inhibitor, has been demonstrated to be effective for the treatment of renal carcinoma. It has been reported that ST is involved in the mediation of autophagy; however, its regulatory role in the autophagic process remains controversial. Furthermore, the mechanism by which activated AMP-activated protein kinase (AMPK) negatively regulates autophagy remains nearly unexplored. In the present study, we revealed that ST inhibited AMPK activity and regulated autophagy in a cell type- and dose-dependent manner. In a number of cell lines, ST was demonstrated to inhibit H2O2-induced autophagy and the phosphorylation of acetyl-CoA carboxylase (ACC), whereas alone it could block the autophagic flux concurrent with increased expression of p62. An immunoprecipitation assay revealed that LC3 directly interacted with p62, whereas ST increased punctate LC3 staining, which was well colocalized with p62. Taken together, we reveal a previously unnoticed pathway for ST to regulate the autophagic process, and p62, although often utilized as a substrate in autophagy, plays a critical role in regulating the inhibition of ST in both basal and induced autophagy.
Collapse
Affiliation(s)
- Bolin Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gang Wang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Quan Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanjie Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Caining Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yange Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia, USA
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejun Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhijun Xi
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
10
|
Khoshvaghti H, Altunkaynak BZ. The effects of bortezomib on the ovariectomy applied rat uterus: A histopathological, stereological, and immunohistochemical study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1118-1125. [PMID: 30483384 PMCID: PMC6251398 DOI: 10.22038/ijbms.2018.24756.6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective(s): In this study, potential protective effects of Bortezomib (Bort), as a proteasome inhibitor, were investigated on the uterus of ovariectomized rats by histological, morphometric and immunohistochemical methods. Materials and Methods: In this study, 18 Sprague dawley strain female rats (12 weeks old, 250-300 g body weight) were used. Animals in the control group (Cont, n=6) were not exposed to any treatment. Ovariectomy was performed on the experimental groups. They (n=12) were divided into ovariectomy (Ovt, n=6) and Bortezomib (Bort, n=6) subgroups. Twelve weeks later, the rats were perfused. Then, uterine tissues were removed and examined by morphometrical, and light and electron microscopy methods. In addition, immunoreactivity of nuclear factor-kappa (NF-κB) was evaluated. Results: Morphometric and histopathological evaluations showed that Bort was effective in the uterus and protects the layer structures and the cells. Conclusion: In the light of these findings, we suggest that for proteasome inhibitor particularly Bort is thought to be useful through proteasome inhibition and NF-κB pathway.
Collapse
Affiliation(s)
- Habib Khoshvaghti
- Department of Histology and Embryology, Medical Faculty, Bülent Ecevit University, Zonguldak, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Medical Faculty, İstanbul Okan University, İstanbul, Turkey
| |
Collapse
|
11
|
Aurantoside C Targets and Induces Apoptosis in Triple Negative Breast Cancer Cells. Mar Drugs 2018; 16:md16100361. [PMID: 30275391 PMCID: PMC6213655 DOI: 10.3390/md16100361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/24/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancers that currently lacks effective targeted therapy. In this study, we found that aurantoside C (C828), isolated from the marine sponge Manihinealynbeazleyae collected from Western Australia, exhibited higher cytotoxic activities in TNBC cells compared with non-TNBC (luminal and normal-like) cells. The cytotoxic effect of C828 was associated to the accumulation of cell at S-phase, resulting in the decline of cyclin D1, cyclin E1, CDK4, and CDK6, and an increase in p21. We also found that C828 inhibited the phosphorylation of Akt/mTOR and NF-kB pathways and increased the phosphorylation of p38 MAPK and SAPK/JNK pathways, leading to apoptosis in TNBC cells. These effects of C828 were not observed in non-TNBC cells at the concentrations that were cytotoxic to TNBC cells. When compared to the cytotoxic effect with the chemotherapeutic drugs doxorubicin and cisplatin, C828 was found to be 20 times and 35 times more potent than doxorubicin and cisplatin, respectively. These results indicate that C828 could be a promising lead for developing new anticancer agents that target TNBC cells.
Collapse
|
12
|
DeVorkin L, Hattersley M, Kim P, Ries J, Spowart J, Anglesio MS, Levi SM, Huntsman DG, Amaravadi RK, Winkler JD, Tinker AV, Lum JJ. Autophagy Inhibition Enhances Sunitinib Efficacy in Clear Cell Ovarian Carcinoma. Mol Cancer Res 2017; 15:250-258. [PMID: 28184014 PMCID: PMC5451253 DOI: 10.1158/1541-7786.mcr-16-0132] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
Clear cell ovarian carcinoma (CCOC) is an aggressive form of epithelial ovarian cancer that exhibits low response rates to systemic therapy and poor patient outcomes. Multiple studies in CCOC have revealed expression profiles consistent with increased hypoxia, and our previous data suggest that hypoxia is correlated with increased autophagy in CCOC. Hypoxia-induced autophagy is a key factor promoting tumor cell survival and resistance to therapy. Recent clinical trials with the molecular-targeted receptor tyrosine kinase (RTK) inhibitor sunitinib have demonstrated limited activity. Here, it was evaluated whether the hypoxia-autophagy axis could be modulated to overcome resistance to sunitinib. Importantly, a significant increase in autophagic activity was found with a concomitant loss in cell viability in CCOC cells treated with sunitinib. Pharmacologic inhibition of autophagy with the lysosomotropic analog Lys05 inhibited autophagy and enhanced sunitinib-mediated suppression of cell viability. These results were confirmed by siRNA targeting the autophagy-related gene Atg5 In CCOC tumor xenografts, Lys05 potentiated the antitumor activity of sunitinib compared with either treatment alone. These data reveal that CCOC tumors have an autophagic dependency and are an ideal tumor histotype for autophagy inhibition as a strategy to overcome resistance to RTK inhibitors like sunitinib.Implications: This study shows that autophagy inhibition enhances sunitinib-mediated cell death in a preclinical model of CCOC. Mol Cancer Res; 15(3); 250-8. ©2017 AACR.
Collapse
Affiliation(s)
- Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Matthew Hattersley
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Paul Kim
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Jenna Ries
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Jaeline Spowart
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael S Anglesio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel M Levi
- Department of Chemistry, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey D Winkler
- Department of Chemistry, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna V Tinker
- BC Cancer Agency, Division of Medical Oncology, Vancouver Centre, Vancouver, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
13
|
Abdel-Aziz AK, Mantawy EM, Said RS, Helwa R. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries. Exp Neurol 2016; 283:129-41. [PMID: 27288242 DOI: 10.1016/j.expneurol.2016.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023]
Abstract
Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Reham Helwa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Sorolla A, Ho D, Wang E, Evans CW, Ormonde CFG, Rashwan R, Singh R, Iyer KS, Blancafort P. Sensitizing basal-like breast cancer to chemotherapy using nanoparticles conjugated with interference peptide. NANOSCALE 2016; 8:9343-53. [PMID: 27089946 DOI: 10.1039/c5nr08331a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting.
Collapse
Affiliation(s)
- A Sorolla
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - D Ho
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - E Wang
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - C W Evans
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - C F G Ormonde
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - R Rashwan
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| | - R Singh
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - K Swaminathan Iyer
- School of Chemistry & Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.
| | - P Blancafort
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
15
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
16
|
Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: Protective role of L-carnitine. Toxicol Lett 2015; 241:9-18. [PMID: 26581635 DOI: 10.1016/j.toxlet.2015.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/23/2015] [Accepted: 11/07/2015] [Indexed: 01/12/2023]
Abstract
Sunitinib (Su) is currently approved for treatment of several malignances. However, along with the benefits of disease stabilization, cardiovascular toxicities have also been increasingly recognized. The aim of this study was to analyze which mechanisms are involved in the cardiotoxicity caused by Su, as well as to explore the potential cardioprotective effects of l-carnitine (LC). To this end, four groups of Wistar rats were used: (1) control; (2) rats treated with 400mg LC/kg/day; (3) rats treated with 25mg Su/kg/day; and (4) rats treated with LC+Su simultaneously. In addition, cultured rat cardiomyocytes were treated with an inhibitor of nuclear factor kappa B (NF-κB), in order to examine the role of this transcription factor in this process. An elevation in the myocardial expression of pro-inflammatory cytokines, together with an increase in the mRNA expression of NF-κB, was observed in Su-treated rats. These results were accompanied by an increase in the expression of pro-fibrotic factors, nitrotyrosine and NOX 2 subunit of NADPH oxidase; and by a decrease in that of collagen degradation factor. Higher blood pressure and heart rate levels were also found in Su-treated rats. All these alterations were inhibited by co-administration of LC. Furthermore, cardiotoxic effects of Su were blocked by NF-κB inhibition. Our results suggest that: (i) inflammatory and fibrotic processes are involved in the cardiac toxicity observed following treatment with Su; (ii) these processes might be mediated by the transcription factor NF-κB; (iii) LC exerts a protective effect against arterial hypertension, cardiac inflammation and fibrosis, which are all observed after Su treatment.
Collapse
|
17
|
Draghiciu O, Nijman HW, Hoogeboom BN, Meijerhof T, Daemen T. Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Oncoimmunology 2015; 4:e989764. [PMID: 25949902 PMCID: PMC4404834 DOI: 10.4161/2162402x.2014.989764] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/14/2014] [Indexed: 01/25/2023] Open
Abstract
The high efficacy of therapeutic cancer vaccines in preclinical studies has yet to be fully achieved in clinical trials. Tumor immune suppression is a critical factor that hampers the desired antitumor effect. Here, we analyzed the combined effect of a cancer vaccine and the receptor tyrosine kinase inhibitor sunitinib. Sunitinib was administered intraperitoneally, alone or in combination with intramuscular immunization using a viral vector based cancer vaccine composed of Semliki Forest virus replicon particles and encoding the oncoproteins E6 and E7 (SFVeE6,7) of human papilloma virus (HPV). We first demonstrated that treatment of tumor-bearing mice with sunitinib alone dose-dependently depleted myeloid-derived suppressor cells (MDSCs) in the tumor, spleen and in circulation. Concomitantly, the number of CD8+ T cells increased 2-fold and, on the basis of CD69 expression, their activation status was greatly enhanced. The intrinsic immunosuppressive activity of residual MDSCs after sunitinib treatment was not changed in a dose-dependent fashion. We next combined sunitinib treatment with SFVeE6,7 immunization. This combined treatment resulted in a 1.5- and 3-fold increase of E7-specific cytotoxic T lymphocytes (CTLs) present within the circulation and tumor, respectively, as compared to immunization only. The ratio of E7-specific CTLs to MDSCs in blood thereby increased 10- to 20-fold and in tumors up to 12.5-fold. As a result, the combined treatment strongly enhanced the antitumor effect of the cancer vaccine. This study demonstrates that sunitinib creates a favorable microenvironment depleted of MDSCs and acts synergistically with a cancer vaccine resulting in enhanced levels of active tumor-antigen specific CTLs, thus changing the balance in favor of antitumor immunity.
Collapse
Key Words
- ARG1, arginase-1
- CTL, cytotoxic T lymphocyte
- DC, dendritic cell
- Flt3, Fms-like tyrosine kinase 3
- HPV, human papilloma virus
- MDSC, myeloid-derived suppressor cell
- PBMC, peripheral blood mononuclear cell
- Semliki Forest virus
- TGFβ, transforming growth factor β
- Treg, regulatory T cell
- VEGF, vascular endothelial growth factor receptor.
- cancer vaccine
- iNOS, nitric oxide synthase
- mRCC, metastatic renal cell carcinoma
- myeloid-derived suppressor cells
- rSFV, recombinant Semliki forest virus
- sunitinib
- suppressive factors
Collapse
Affiliation(s)
- Oana Draghiciu
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, the Netherlands
| | - Hans W Nijman
- Department of Gynecology; University of Groningen; University Medical Center Groningen ; Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, the Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, the Netherlands
| |
Collapse
|
18
|
Alonso-Alconada L, Santacana M, Garcia-Sanz P, Muinelo-Romay L, Colas E, Mirantes C, Monge M, Cueva J, Oliva E, Soslow RA, Lopez MA, Palacios J, Prat J, Valls J, Krakstad C, Salvesen H, Gil-Moreno A, Lopez-Lopez R, Dolcet X, Moreno-Bueno G, Reventos J, Matias-Guiu X, Abal M. Annexin-A2 as predictor biomarker of recurrent disease in endometrial cancer. Int J Cancer 2014; 136:1863-73. [PMID: 25219463 DOI: 10.1002/ijc.29213] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022]
Abstract
Endometrial carcinomas, the most common malignant tumour of the female genital tract, are usually diagnosed at an early stage with uterine-confined disease and an overall favourable prognosis. However, up to 20% of endometrial carcinomas will end up in recurrent disease, associated with a drop in survival and representing the major clinical challenge. Management of this group of risk patients relies on robust biomarkers that may predict which endometrial carcinomas will relapse. For this, we performed a proteomic analysis comparing primary lesions with recurrences and identified ANXA2 as a potential biomarker associated with recurrent disease that we further validated in an independent series of samples by immunohistochemistry. We demonstrated in vitro a role for ANXA2 in the promotion of metastasis rather than interfering with sensitivity to radio/chemotherapy. In addition, ANXA2 silencing resulted in a reduced metastatic pattern in a mice model of endometrial cancer dissemination, with a limited presence of circulating tumor cells. Finally, a retrospective study in a cohort of 93 patients showed that ANXA2 effectively predicted those endometrioid endometrial carcinomas that finally recurred. Importantly, ANXA2 demonstrated a predictive value also among low risk Stage I endometrioid endometrial carcinomas, highlighting the clinical utility of ANXA2 biomarker as predictor of recurrent disease in endometrial cancer. Retrospective and prospective studies are ongoing to validate ANXA2 as a potential tool for optimal stratification of patients susceptible to receive radical surgery and radio/chemotherapy.
Collapse
Affiliation(s)
- Lorena Alonso-Alconada
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Alonso-Alconada L, Muinelo-Romay L, Madissoo K, Diaz-Lopez A, Krakstad C, Trovik J, Wik E, Hapangama D, Coenegrachts L, Cano A, Gil-Moreno A, Chiva L, Cueva J, Vieito M, Ortega E, Mariscal J, Colas E, Castellvi J, Cusido M, Dolcet X, Nijman HW, Bosse T, Green JA, Romano A, Reventos J, Lopez-Lopez R, Salvesen HB, Amant F, Matias-Guiu X, Moreno-Bueno G, Abal M. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Mol Cancer 2014; 13:223. [PMID: 25261936 PMCID: PMC4190574 DOI: 10.1186/1476-4598-13-223] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About 20% of patients diagnosed with endometrial cancer (EC) are considered high-risk with unfavorable prognosis. In the framework of the European Network for Individualized Treatment in EC (ENITEC), we investigated the presence and phenotypic features of Circulating Tumor Cells (CTC) in high-risk EC patients. METHODS CTC isolation was carried out in peripheral blood samples from 34 patients, ranging from Grade 3 Stage IB to Stage IV carcinomas and recurrences, and 27 healthy controls using two methodologies. Samples were subjected to EpCAM-based immunoisolation using the CELLection™ Epithelial Enrich kit (Invitrogen, Dynal) followed by RTqPCR analysis. The phenotypic determinants of endometrial CTC in terms of pathogenesis, hormone receptor pathways, stem cell markers and epithelial to mesenchymal transition (EMT) drivers were asked. Kruskal-Wallis analysis followed by Dunn's post-test was used for comparisons between groups. Statistical significance was set at p < 0.05. RESULTS EpCAM-based immunoisolation positively detected CTC in high-risk endometrial cancer patients. CTC characterization indicated a remarkable plasticity phenotype defined by the expression of the EMT markers ETV5, NOTCH1, SNAI1, TGFB1, ZEB1 and ZEB2. In addition, the expression of ALDH and CD44 pointed to an association with stemness, while the expression of CTNNB1, STS, GDF15, RELA, RUNX1, BRAF and PIK3CA suggested potential therapeutic targets. We further recapitulated the EMT phenotype found in endometrial CTC through the up-regulation of ETV5 in an EC cell line, and validated in an animal model of systemic dissemination the propensity of these CTC in the accomplishment of metastasis. CONCLUSIONS Our results associate the presence of CTC with high-risk EC. Gene-expression profiling characterized a CTC-plasticity phenotype with stemness and EMT features. We finally recapitulated this CTC-phenotype by over-expressing ETV5 in the EC cell line Hec1A and demonstrated an advantage in the promotion of metastasis in an in vivo mouse model of CTC dissemination and homing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Miguel Abal
- Translational Medical Oncology; Health Research Institute of Santiago (IDIS), SERGAS, Trav, Choupana s/n 15706, Santiago de Compostela, Spain.
| | | |
Collapse
|
20
|
Alonso-Alconada L, Eritja N, Muinelo-Romay L, Barbazan J, Lopez-Lopez R, Matias-Guiu X, Gil-Moreno A, Dolcet X, Abal M. ETV5 transcription program links BDNF and promotion of EMT at invasive front of endometrial carcinomas. Carcinogenesis 2014; 35:2679-86. [DOI: 10.1093/carcin/bgu198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
21
|
O’Rourke RW. Endometrial hyperplasia, endometrial cancer, and obesity: convergent mechanisms regulating energy homeostasis and cellular proliferation. Surg Obes Relat Dis 2014; 10:926-8. [DOI: 10.1016/j.soard.2014.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
|
22
|
Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling. Anticancer Drugs 2014; 25:270-81. [PMID: 24296733 DOI: 10.1097/cad.0000000000000054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter.
Collapse
|
23
|
Matias-Guiu X, Davidson B. Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch 2014; 464:315-31. [PMID: 24504546 DOI: 10.1007/s00428-013-1509-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023]
Abstract
This article reviews the main prognostic and predictive biomarkers of endometrial (EC) and ovarian carcinoma (OC). In EC, prognosis still relies on conventional pathological features such as histological type and grade, as well as myometrial or lymphovascular space invasion. Estrogen receptor, p53, Ki-67, and ploidy analysis are the most promising biomarkers among a long list of molecules that have been proposed. Also, a number of putative predictive biomarkers have been proposed in molecular targeted therapy. In OC, prognosis is predominantly dependent on disease stage at diagnosis and the extent of residual disease at primary operation. Diagnostic markers which aid in establishing histological type in OC are available. However, not a single universally accepted predictive or prognostic marker exists to date. Targeted therapy has been growingly focused at in recent years, in view of the frequent development of chemoresistance at recurrent disease. The present review emphasizes the crucial role of correct pathological classification and stringent selection criteria of the material studied as basis for any evaluation of biological markers. It further emphasizes the promise of targeted therapy in EC and OC, while simultaneously highlighting the difficulties remaining before this can become standard of care.
Collapse
Affiliation(s)
- Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Av. Alcalde Rovira Roure 80, 25198, Lleida, Spain,
| | | |
Collapse
|
24
|
Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology 2013; 62:111-23. [PMID: 23240673 DOI: 10.1111/his.12053] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review paper discusses the main molecular alterations of endometrial carcinoma, the most common cancer of the female genital tract. Two clinicopathological variants are recognized: the oestrogen-related (type I, endometrioid carcinoma) and the non-oestrogen-related (type II, non-endometrioid carcinoma). Whereas type I shows microsatellite instability and mutations in PTEN, PIK3CA, K-RAS and CTNNB1 (beta-catenin), type II exhibits TP53 mutations and chromosomal instability. Recent investigations regarding the role of non-coding RNA have provided important information regarding tumour progression. Understanding pathogenesis at the molecular level is essential for identifying biomarkers of potential use in targeted therapies.
Collapse
Affiliation(s)
- Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Lleida, Spain.
| | | |
Collapse
|
25
|
Harvey RD, Owonikoko TK, Lewis CM, Akintayo A, Chen Z, Tighiouart M, Ramalingam SS, Fanucchi MP, Nadella P, Rogatko A, Shin DM, El-Rayes B, Khuri FR, Kauh JS. A phase 1 Bayesian dose selection study of bortezomib and sunitinib in patients with refractory solid tumor malignancies. Br J Cancer 2013; 108:762-5. [PMID: 23322195 PMCID: PMC3590658 DOI: 10.1038/bjc.2012.604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This phase 1 trial utilising a Bayesian continual reassessment method evaluated bortezomib and sunitinib to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and recommended doses of the combination. METHODS Patients with advanced solid organ malignancies were enrolled and received bortezomib weekly with sunitinib daily for 4 weeks, every 6 weeks. Initial doses were sunitinib 25 mg and bortezomib 1 mg m(-2). Cohort size and dose level estimation was performed utilising the Escalation with Overdose Control (EWOC) adaptive method. Seven dose levels were evaluated; initially, sunitinib was increased to a goal dose of 50 mg with fixed bortezomib, then bortezomib was increased. Efficacy assessment occurred after each cycle using RECIST criteria. RESULTS Thirty patients were evaluable. During sunitinib escalation, DLTs of grade 4 thrombocytopenia (14%) and neutropenia (6%) at sunitinib 50 mg and bortezomib 1.3 mg m(-2) were seen. Subsequent experience showed tolerability and activity for sunitinib 37.5 mg and bortezomib 1.9 mg m(-2). Common grade 3/4 toxicities were neutropenia, thrombocytopenia, hypertension, and diarrhoea. The recommended doses for further study are bortezomib 1.9 mg m(-2) and sunitinib 37.5 mg. Four partial responses were seen. Stable disease >6 months was noted in an additional six patients. CONCLUSION Bortezomib and sunitinib are well tolerated and have anticancer activity, particularly in thyroid cancer. A phase 2 study of this combination in thyroid cancer patients is planned.
Collapse
Affiliation(s)
- R D Harvey
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sorolla A, Yeramian A, Valls J, Dolcet X, Bergadà L, Llombart-Cussac A, Martí RM, Matias-Guiu X. Blockade of NFκB activity by Sunitinib increases cell death in Bortezomib-treated endometrial carcinoma cells. Mol Oncol 2012; 6:530-41. [PMID: 22819259 DOI: 10.1016/j.molonc.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023] Open
Abstract
Endometrial carcinoma is one of the most common malignancies in the female genital tract, usually treated by surgery and radiotherapy. Chemotherapy is used when endometrial carcinoma is associated with widespread metastasis or when the tumor recurs after radiation therapy. In the present study, we demonstrate that the tyrosine kinase receptor inhibitor Sunitinib reduces cell viability, proliferation, clonogenicity and induces apoptotic cell death in endometrial carcinoma cell lines, which is not due to its action through the most known targets like VEGFR, nor through EGFR as demonstrated in this work. Interestingly, Sunitinib reduces NFκB transcriptional activity either at basal level or activation by EGF or TNF-α. We observed that Sunitinib was able to inhibit the Bortezomib-induced NFκB transcriptional activity which correlates with a decrease of the phosphorylated levels of IKKα and β, p65 and IκBα. We evaluated the nature of the interaction between Sunitinib and Bortezomib by the dose effect method and identified a synergistic effect (combination index < 1). Analogously, silencing of p65 expression by lentiviral-mediated short-hairpin RNA delivery in Bortezomib treated cells leads to a strongly increased sensitivity to Bortezomib apoptotic cell death. Altogether our results suggest that the combination of Sunitinib and Bortezomib could be considered a promising treatment for endometrial carcinoma after failure of surgery and radiation.
Collapse
Affiliation(s)
- Anabel Sorolla
- Pathology Group, Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, 25198 Lleida, Spain
| | | | | | | | | | | | | | | |
Collapse
|