1
|
Li Z, Chen Z, Zhao L, Sun J, Yin L, Jiang Y, Shi X, Song Z, Zhang L. Lack of T04C9.1, the Homologue of Mammalian APPL2, Leads to Premature Ageing and Shortens Lifespan in Caenorhabditis elegans. Genes (Basel) 2024; 15:659. [PMID: 38927595 PMCID: PMC11202736 DOI: 10.3390/genes15060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Ageing has been identified as an independent risk factor for various diseases; however, the physiological basis and molecular changes related to ageing are still largely unknown. Here, we show that the level of APPL2, an adaptor protein, is significantly reduced in the major organs of aged mice. Knocking down APPL2 causes premature ageing of human umbilical vein endothelial cells (HUVECs). We find that a lack of T04C9.1, the homologue of mammalian APPL2, leads to premature ageing, slow movements, lipid deposition, decreased resistance to stresses, and shortened lifespan in Caenorhabditis elegans (C. elegans), which are associated with decreased autophagy. Activating autophagy by rapamycin or inhibition of let-363 suppresses the age-related alternations, impaired motility, and shortened lifespan of C. elegans, which are reversed by knocking down autophagy-related genes. Our work provides evidence that APPL2 and its C. elegans homologue T04C9.1 decrease with age and reveals that a lack of T04C9.1 bridges autophagy decline and ageing in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lu Zhang
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, High-Tech Zone, Zhengzhou 450001, China
| |
Collapse
|
2
|
Cai R, Khan S, Chen X, Li H, Tan J, Tian Y, Zhao S, Yin Z, Liu T, Jin D, Guo J. Aspongopus chinensis ach-miR-276a-3p induces breast cancer cell cycle arrest by targeting APPL2 to regulate the CDK2-Rb-E2F1 signaling pathway. Toxicol Appl Pharmacol 2024; 484:116877. [PMID: 38431228 DOI: 10.1016/j.taap.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.
Collapse
Affiliation(s)
- Renlian Cai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Samiullah Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Xumei Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Haiyin Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Ying Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Shuai Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Zhiyong Yin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Tongxian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Daochao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China.
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Wang J, Zhang B, Gong S, Liu Y, Yi L, Long Y. Cancer susceptibility 18 positively regulates NUAK Family Kinase 1 expression to promote migration and invasion via sponging of miR-5586-5p in cervical cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231223310. [PMID: 38131232 DOI: 10.1177/03946320231223310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Cervical squamous cell carcinoma (CESC) is the most common gynecological malignancy worldwide. Although the cancer susceptibility 18 (CASC18) gene was involved in the regulation of cancer biology, its specific role in CESC is not well characterized. METHODS CASC18-related axis was predicted by bioinformatic analyses, and the competing endogenous RNA (ceRNA) interaction was further validated using quantitative real-time PCR, western blotting, RNA pulldown, and luciferase reporter assays. Transwell and wound healing assays were performed to verify the effect of CASC18 on SiHa and HeLa cell motility. RESULTS We found that CASC18 was upregulated in CESC tissues. Moreover, interference with CASC18 attenuated NUAK1-mediated epithelial-mesenchymal transition (EMT) and thus suppressed cancer cell motility. Furthermore, the effects of CASC18 knockdown on CESC cells were partly rescued by transfection with the miR-5586-5p inhibitor. Additionally, our findings indicated that CASC18 acts as a ceRNA to enhance NUAK1 expression by sponging miR-5586-5p. CONCLUSION Our study showed a novel CASC18/miR-5586-5p/NUAK1 ceRNA axis that could regulate cell invasion and migration by modulating EMT in CESC. These findings suggest that CASC18 may potentially serve as a novel therapeutic target in CESC treatment.
Collapse
Affiliation(s)
- Jingrong Wang
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bocheng Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sha Gong
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Liu
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Liang Yi
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying Long
- Translational Medicine Centre, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Provincial Clinical Research Centre for Oncoplastic Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
4
|
Transcriptomics-Based Phenotypic Screening Supports Drug Discovery in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13153780. [PMID: 34359681 PMCID: PMC8345128 DOI: 10.3390/cancers13153780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) remains a particularly challenging cancer, with an aggressive phenotype and few promising treatment options. Future therapy will rely heavily on diagnosing and targeting aggressive GBM cellular phenotypes, both before and after drug treatment, as part of personalized therapy programs. Here, we use a genome-wide drug-induced gene expression (DIGEX) approach to define the cellular drug response phenotypes associated with two clinical drug candidates, the phosphodiesterase 10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib. We identify genes encoding specific drug targets, some of which we validate as effective antiproliferative agents and combination therapies in human GBM cell models, including HMGCoA reductase (HMGCR), salt-inducible kinase 1 (SIK1), bradykinin receptor subtype B2 (BDKRB2), and Janus kinase isoform 2 (JAK2). Individual, personalized treatments will be essential if we are to address and overcome the pharmacological plasticity that GBM exhibits, and DIGEX will play a central role in validating future drugs, diagnostics, and possibly vaccine candidates for this challenging cancer. Abstract We have used three established human glioblastoma (GBM) cell lines—U87MG, A172, and T98G—as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.
Collapse
|
5
|
Kaya-Aksoy E, Cingoz A, Senbabaoglu F, Seker F, Sur-Erdem I, Kayabolen A, Lokumcu T, Sahin GN, Karahuseyinoglu S, Bagci-Onder T. The pro-apoptotic Bcl-2 family member Harakiri (HRK) induces cell death in glioblastoma multiforme. Cell Death Discov 2019; 5:64. [PMID: 30774992 PMCID: PMC6368544 DOI: 10.1038/s41420-019-0144-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Harakiri (HRK) is a BH3-only protein of the Bcl-2 family and regulates apoptosis by interfering with anti-apoptotic Bcl-2 and Bcl-xL proteins. While its function is mainly characterized in the nervous system, its role in tumors is ill-defined with few studies demonstrating HRK silencing in tumors. In this study, we investigated the role of HRK in the most aggressive primary brain tumor, glioblastoma multiforme (GBM). We showed that HRK is differentially expressed among established GBM cell lines and that HRK overexpression can induce apoptosis in GBM cells at different levels. This phenotype can be blocked by forced expression of Bcl-2 and Bcl-xL, suggesting the functional interaction of Bcl-2/Bcl-xL and HRK in tumor cells. Moreover, HRK overexpression cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a known tumor-specific pro-apoptotic agent. Besides, secondary agents that augment TRAIL response, such as the histone deacetylase inhibitor MS-275, significantly increases HRK expression. In addition, GBM cell response to TRAIL and MS-275 can be partly abolished by HRK silencing. Finally, we showed that HRK induction suppresses tumor growth in orthotopic GBM models in vivo, leading to increased survival. Taken together, our results suggest that HRK expression is associated with GBM cell apoptosis and increasing HRK activity in GBM tumors might offer new therapeutic approaches.
Collapse
Affiliation(s)
- Ezgi Kaya-Aksoy
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Ahmet Cingoz
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Filiz Senbabaoglu
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Fidan Seker
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Ilknur Sur-Erdem
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Alisan Kayabolen
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Tolga Lokumcu
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| | - Gizem Nur Sahin
- 2Department of Histology and Embryology, Koç University School of Medicine, Istanbul, Turkey
| | - Sercin Karahuseyinoglu
- 2Department of Histology and Embryology, Koç University School of Medicine, Istanbul, Turkey
| | - Tugba Bagci-Onder
- 1Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Ghalaei A, Kay M, Zarrinfam S, Hoseinpour P, Behmanesh M, Soltani BM. Overexpressed in colorectal carcinoma gene (OCC-1) upregulation and APPL2 gene downregulation in breast cancer specimens. Mol Biol Rep 2018; 45:1889-1895. [PMID: 30218350 DOI: 10.1007/s11033-018-4336-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
Abstract
Breast cancer is the most common cancer type and the second cause of cancer death in women. Different mechanisms are contributed to the initiation and progression of the breast cancer. OCC-1 and APPL2 neighboring genes located in 12q.23.3 human chromosome region are related to colorectal cancer. Here, we intended to investigate OCC-1 newly reported transcript variants and APPL2 gene expression alteration in breast cancer specimens and investigate OCC-1 variants overexpression effect on APPL2 and on cell cycle status. Rt-qPCR analysis indicated that the expression level of OCC-1A/B and OCC-1D (not OCC-1C) transcript variants has been increased while, APPL2 gene expression level has been decreased in breast cancer specimen, compared to their normal pairs. Therefore, a negative correlation of expression is evident between APPL2 and OCC-1 genes in breast cancer specimen. Unlike OCC-1A/B which encodes a small protein, OCC-1D noncoding RNA overexpression lead to APPL2 downregulation in MCF7 cells. Consistently, OCC-1D overexpression resulted in increased sub-G1 cell population in MCF7 cells, detected by flow cytometry. Altogether, these results suggest that OCC1-D variant have an inhibitory effect on APPL2 expression and may regulate the cell cycle status.
Collapse
Affiliation(s)
| | - Maryam Kay
- Genetics Deptartment, Tarbiat Modares University, Tehran, Iran
| | - Shiva Zarrinfam
- Genetics Deptartment, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
7
|
Xu L, Wang R, Ziegelbauer J, Wu WW, Shen RF, Juhl H, Zhang Y, Pelosof L, Rosenberg AS. Transcriptome analysis of human colorectal cancer biopsies reveals extensive expression correlations among genes related to cell proliferation, lipid metabolism, immune response and collagen catabolism. Oncotarget 2017; 8:74703-74719. [PMID: 29088818 PMCID: PMC5650373 DOI: 10.18632/oncotarget.20345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
Precise characterization of biological processes critical to proliferation and metastasis of colorectal cancer should facilitate the development of diagnostic and prognostic biomarkers as well as novel treatments. Using mRNA-Seq, we examined the protein coding messenger RNA (mRNA) expression profiles across different histologically defined stages of primary colon cancers and compared them to their patient matched normal tissue controls. In comparing 79 colorectal cancers to their matched normal mucosa, tumors were distinguished from normal non-malignant tissues not only in the upregulation of biological processes pertaining to cell proliferation, inflammation, and tissue remodeling, but even more strikingly, in downregulated biological processes including fatty acid beta oxidization for ATP production and epithelial cell differentiation and function. A network analysis of deregulated genes revealed newly described cancer networks and putative hub genes. Taken together, our findings suggest that, within an inflammatory microenvironment, invasive, dedifferentiated and rapidly dividing tumor cells divert the oxidation of fatty acids and lipids from energy production into lipid components of cell membranes and organelles to support tumor proliferation. A gene co-expression network analysis provides a clear and broad picture of biological pathways in tumors that may significantly enhance or supplant current histopathologic studies.
Collapse
Affiliation(s)
- Lai Xu
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Rong Wang
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | | | - Wells W Wu
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, FDA, Silver Spring, MD 20993, USA
| | | | - Yaqin Zhang
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Lorraine Pelosof
- Office of Hematology and Oncology Products, CDER, FDA, Silver Spring, MD 20993, USA
| | - Amy S Rosenberg
- Office of Biotechnology Products, CDER, FDA, Silver Spring, MD 20993, USA
| |
Collapse
|
8
|
APPL1 is a multifunctional endosomal signaling adaptor protein. Biochem Soc Trans 2017; 45:771-779. [PMID: 28620038 DOI: 10.1042/bst20160191] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022]
Abstract
Endosomal adaptor proteins are important regulators of signaling pathways underlying many biological processes. These adaptors can integrate signals from multiple pathways via localization to specific endosomal compartments, as well as through multiple protein-protein interactions. One such adaptor protein that has been implicated in regulating signaling pathways is the adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes through its Bin-Amphiphysin-Rvs and PH domains, and it coordinates signaling pathways through its interaction with many signaling receptors and proteins through its PTB domain. This review discusses our current understanding of the role of APPL1 in signaling and trafficking, as well as highlights recent work into the function of APPL1 in cell migration and adhesion.
Collapse
|
9
|
Gao C, Wang Q, Chung SK, Shen J. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases. Neurochem Int 2017; 106:24-36. [DOI: 10.1016/j.neuint.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
|
10
|
Liu Z, Xiao T, Peng X, Li G, Hu F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal 2017; 32:76-84. [PMID: 28108259 DOI: 10.1016/j.cellsig.2017.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/31/2022]
Abstract
APPLs (adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif) are multifunctional adaptor proteins that bind to various membrane receptors, nuclear factors and signaling proteins to regulate many biological activities and processes, such as cell proliferation, chromatin remodeling, endosomal trafficking, cell survival, cell metabolism and apoptosis. APPL1, one of the APPL isoforms, was the first identified protein and interacts directly with adiponectin receptors to mediate adiponectin signaling to enhance lipid oxidation and glucose uptake. APPLs also act on insulin signaling pathways and are important mediators of insulin sensitization. Based on recent findings, this review highlights the critical roles of APPLs, particularly APPL1 and its isoform partner APPL2, in mediating adiponectin, insulin, endosomal trafficking and other signaling pathways. A deep understanding of APPLs and their related signaling pathways may potentially lead to therapeutic and interventional treatments for obesity, diabetes, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ting Xiao
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaoyu Peng
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Hu
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center of Central South University, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Mehravar M, Jafarzadeh M, Kay M, Najafi H, Hosseini F, Mowla SJ, Soltani BM. Introduction of novel splice variants for CASC18 gene and its relation to the neural differentiation. Gene 2016; 603:27-33. [PMID: 27956168 DOI: 10.1016/j.gene.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND CASC18 along with APPL2, OCC-1 and NUAK1 flanking genes are located in 12q23.3 locus which is known as a potential cancer predisposition locus. Only an uncharacterized EST was initially reported for CASC18 and it was crucial to find its full length sequence and function. METHODS AND RESULTS In an attempt to search for the CASC18's full-length gene sequence, other related ESTs were bioinformatically collected and four novel splice variants (designated as; CASC18-A, -B, -C and -D) were deduced and some were experimentally validated. Two transcription start sites and two alternative polyadenylation sites were deduced for CASC18 gene, using EST data mining and RACE method. CASC18-A and CASC18-D were exclusively expressed in neural cell lines and CASC18-D expression level was gradually increased during the NT2 differentiation to the neuron-like cells. Consistently, overexpression of CASC18-D variant in NT2 cells resulted in remarkable up-regulation of PAX6 neural differentiation marker, suggesting a crucial role of this variant in neural differentiation. CONCLUSION Here, we introduced seven novel transcription variants for human CASC18 gene in which CASC18-D has the potential of being used as a neural cell differentiation marker.
Collapse
Affiliation(s)
- Majid Mehravar
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meisam Jafarzadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Kay
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Najafi
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Hosseini
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Song J, Mu Y, Li C, Bergh A, Miaczynska M, Heldin CH, Landström M. APPL proteins promote TGFβ-induced nuclear transport of the TGFβ type I receptor intracellular domain. Oncotarget 2016; 7:279-92. [PMID: 26583432 PMCID: PMC4807998 DOI: 10.18632/oncotarget.6346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023] Open
Abstract
The multifunctional cytokine transforming growth factor-β (TGFβ) is produced by several types of cancers, including prostate cancer, and promote tumour progression in autocrine and paracrine manners. In response to ligand binding, the TGFβ type I receptor (TβRI) activates Smad and non-Smad signalling pathways. The ubiquitin-ligase tumour necrosis factor receptor-associated factor 6 (TRAF6) was recently linked to regulate intramembrane proteolytic cleavage of the TβRI in cancer cells. Subsequently, the intracellular domain (ICD) of TβRI enters in an unknown manner into the nucleus, where it promotes the transcription of pro-invasive genes, such as MMP2 and MMP9. Here we show that the endocytic adaptor molecules APPL1 and APPL2 are required for TGFβ-induced nuclear translocation of TβRI-ICD and for cancer cell invasiveness of human prostate and breast cancer cell lines. Moreover, APPL proteins were found to be expressed at high levels in aggressive prostate cancer tissues, and to be associated with TβRI in a TRAF6-dependent manner. Our results suggest that the APPL–TβRI complex promotes prostate tumour progression, and may serve as a prognostic marker.
Collapse
Affiliation(s)
- Jie Song
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Yabing Mu
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Chunyan Li
- Implant Center, Stomatological Hospital, Jilin University, Changchun, China
| | - Anders Bergh
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Marta Miaczynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, Warsaw, Poland
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
13
|
Yeo JC, Wall AA, Luo L, Stow JL. Rab31 and APPL2 enhance FcγR-mediated phagocytosis through PI3K/Akt signaling in macrophages. Mol Biol Cell 2015; 26:952-65. [PMID: 25568335 PMCID: PMC4342030 DOI: 10.1091/mbc.e14-10-1457] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rab31 recruits APPL2 to regulate phagocytic cup closure and FcγR signaling pathways via production of PI(3,4,5)P3 in macrophages. APPL2 is poised to activate macrophages and act as a counterpoint to APPL1 in FcγR-mediated PI3K/Akt signaling. New locations and roles are found for Rab31 and APPL2 by which they contribute to innate immune functions. Membrane remodeling in the early stages of phagocytosis enables the engulfment of particles or pathogens and receptor signaling to activate innate immune responses. Members of the Rab GTPase family and their disparate effectors are recruited sequentially to regulate steps throughout phagocytosis. Rab31 (Rab22b) is known for regulating post-Golgi trafficking, and here we show in macrophages that Rab31-GTP is additionally and specifically recruited to early-stage phagosomes. At phagocytic cups, Rab31 is first recruited during the phosphoinositide transition from PI(4,5)P2 to PI(3,4,5)P3, and it persists on PI(3)P-enriched phagosomes. During early phagocytosis, we find that Rab31 recruits the signaling adaptor APPL2. siRNA depletion of either Rab31 or APPL2 reduces FcγR-mediated phagocytosis. Mechanistically, this corresponds with a delay in the transition to PI(3,4,5)P3 and phagocytic cup closure. APPL2 depletion also reduced PI3K/Akt signaling and enhanced p38 signaling from FcγR. We thus conclude that Rab31/APPL2 is required for key roles in phagocytosis and prosurvival responses of macrophages. Of interest, in terms of localization and function, this Rab31/APPL2 complex is distinct from the Rab5/APPL1 complex, which is also involved in phagocytosis and signaling.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
14
|
Hennig J, McShane MP, Cordes N, Eke I. APPL proteins modulate DNA repair and radiation survival of pancreatic carcinoma cells by regulating ATM. Cell Death Dis 2014; 5:e1199. [PMID: 24763056 PMCID: PMC4001316 DOI: 10.1038/cddis.2014.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/12/2022]
Abstract
Despite intensive multimodal therapies, the overall survival rate of patients with ductal adenocarcinoma of the pancreas is still poor. The chemo- and radioresistance mechanisms of this tumor entity remain to be determined in order to develop novel treatment strategies. In cancer, endocytosis and membrane trafficking proteins are known to be utilized and they also critically regulate essential cell functions like survival and proliferation. On the basis of these data, we evaluated the role of the endosomal proteins adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif (APPL)1 and 2 for the radioresistance of pancreatic carcinoma cells. Here, we show that APPL2 expression in pancreatic cancer cells is upregulated after irradiation and that depletion of APPL proteins by small interfering RNA (siRNA) significantly reduced radiation survival in parallel to impairing DNA double strand break (DSB) repair. In addition, APPL knockdown diminished radiogenic hyperphosphorylation of ataxia telangiectasia mutated (ATM). Activated ATM and APPL1 were also shown to interact after irradiation, suggesting that APPL has a more direct role in the phosphorylation of ATM. Double targeting of APPL proteins and ATM caused similar radiosensitization and concomitant DSB repair perturbation to that observed after depletion of single proteins, indicating that ATM is the central modulator of APPL-mediated effects on radiosensitivity and DNA repair. These data strongly suggest that endosomal APPL proteins contribute to the DNA damage response. Whether targeting of APPL proteins is beneficial for the survival of patients with pancreatic adenocarcinoma remains to be elucidated.
Collapse
Affiliation(s)
- J Hennig
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - M P McShane
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - N Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - I Eke
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| |
Collapse
|
15
|
Novel combination of sorafenib and celecoxib provides synergistic anti-proliferative and pro-apoptotic effects in human liver cancer cells. PLoS One 2013; 8:e65569. [PMID: 23776502 PMCID: PMC3680460 DOI: 10.1371/journal.pone.0065569] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/26/2013] [Indexed: 01/05/2023] Open
Abstract
Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies.
Collapse
|
16
|
Zhan B, Kong C, Guo K, Zhang Z. PKCα is involved in the progression of kidney carcinoma through regulating netrin-1/UNC5B signaling pathway. Tumour Biol 2013; 34:1759-66. [PMID: 23526078 DOI: 10.1007/s13277-013-0714-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
With a special interest towards a better understanding of signal pathways, we attempted to discover a safer and more effective therapeutic strategy for kidney carcinoma. Recent studies had suggested a role mediated by PKCα for netrin-1 and its receptors in the initiation and progression of tumors. Real-time PCR and western blotting were used to determine the expression levels of netrin-1 and UNC5B. We made use of the agonist of PKCα (phorbol-12-myristate 13-acetate-PMA) and the inhibitor of PKCα (calphostin C) to treat renal cell carcinoma (RCC) cells, and MTT assays were used to measure cell proliferation. By immunofluorescence, we identified the localization of netrin-1 and UNC5B in RCC cell lines 769-P and ACHN. The expression of UNC5B in tumor tissues was significantly downregulated compared to the corresponding normal tissues in which netrin-1 was upregulated. In low grade tumors, UNC5B expression was more prominent while netrin-1 expression was the opposite when compared with high grade ones. Proliferation of ACHN cells was concentration dependent in the presence of PMA and calphostin C. Netrin-1 and UNC5B expressions were upregulated in cells treated with PMA while calphostin C reversed this upregulation. By immunofluorescence, we identified that netrin-1 was highly expressed in the nuclear but none of UNC5B. Our data highly suggested that PMA-induced upregulation and calphostin C-induced reversion of netrin-1 and UNC5B in kidney carcinoma were accompanied by the activation of the netrin-1/UNC5B pathways.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province, People's Republic of China, 110001.
| | | | | | | |
Collapse
|
17
|
Pyrzynska B, Banach-Orlowska M, Teperek-Tkacz M, Miekus K, Drabik G, Majka M, Miaczynska M. Multifunctional protein APPL2 contributes to survival of human glioma cells. Mol Oncol 2012; 7:67-84. [PMID: 22989406 PMCID: PMC3553582 DOI: 10.1016/j.molonc.2012.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 12/01/2022] Open
Abstract
Some endocytic proteins have recently been shown to play a role in tumorigenesis. In this study, we demonstrate that APPL2, an adapter protein with known endocytic functions, is upregulated in 40% cases of glioblastoma multiforme, the most common and aggressive cancer of the central nervous system. The silencing of APPL2 expression by small interfering RNAs (siRNAs) in glioma cells markedly reduces cell survival under conditions of low growth factor availability and enhances apoptosis (measured by executor caspase activity). Long‐term depletion of APPL2 by short hairpin RNAs (shRNAs), under regular growth factor availability, suppresses the cell transformation abilities, assessed by inhibited colony formation in soft agar and by reduced xenograft tumor growth in vivo. At the molecular level, the negative effect of APPL2 knockdown on cell survival is not due to the alterations in AKT or GSK3β activities which were reported to be modulated by APPL proteins. Instead, we attribute the reduced cell survival upon APPL2 depletion to the changes in gene expression, in particular to the upregulation of apoptosis‐related genes, such as UNC5B (a proapoptotic dependence receptor) and HRK (harakiri, an activator of apoptosis, which antagonizes anti‐apoptotic function of Bcl2). In support of this notion, the loss of glioma cell survival upon APPL2 knockdown can be rescued either by an excess of netrin‐1, the prosurvival ligand of UNC5B or by simultaneous silencing of HRK. Consistently, APPL2 overexpression reduces expression of HRK and caspase activation in cells treated with apoptosis inducers, resulting in the enhancement of cell viability. This prosurvival activity of APPL2 is independent of its endosomal localization. Cumulatively, our data indicate that a high level of APPL2 protein might enhance glioblastoma growth by maintaining low expression level of genes responsible for cell death induction. APPL2 protein levels are elevated in 40% cases of glioblastoma multiforme. Overexpression of APPL2 exhibits cytoprotective effects in glioma cells. APPL2 depletion reduces survival and transformation abilities of glioma cells. Silencing of APPL2 promotes expression of proapoptotic genes HRK and UNC5B.
Collapse
Affiliation(s)
- Beata Pyrzynska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|